Searched for: school:SOM
Department/Unit:Cell Biology
Transcription-coupled and transcription-independent repair of cyclobutane pyrimidine dimers in the dihydrofolate reductase gene
Hu, Wenwei; Feng, Zhaohui; Chasin, Lawrence A; Tang, Moon-shong
Using a ligation-mediated polymerase chain reaction technique, we have mapped the repair of ultraviolet light-induced cyclobutane pyrimidine dimers (CPDs) at the nucleotide level in exons 1, 2, and 5 of the dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells. We found that CPDs are preferentially repaired in the transcribed strand (T strand) and that the order of repair efficiency is exon 1 > exon 2 > exon 5. In the cells with a deletion of the DHFR gene encompassing the promoter region and the first four exons, CPDs are not repaired in the T strand of the residual DHFR gene. These results substantiate the idea that the preferential repair of CPDs in the T strand is transcription dependent. However, in the wild type gene we have found that CPDs are efficiently repaired in the nontranscribed strand (NT strand) of exon 1 but not in the NT strand of exons 2 and 5. Probing the chromatin structure of exons 1, 2, and 5 of the DHFR gene with micrococcal nuclease revealed that the exon 1 region is much more sensitive to micrococcal nuclease digestion than the exon 2 and exon 5 regions, suggesting that the chromatin structure in the exon 1 region is much more open. These results suggest that, although preferential repair of the T strand of the DHFR gene is transcription dependent, repair of the NT strand is greatly affected by chromatin structure
PMID: 12167651
ISSN: 0021-9258
CID: 39609
The structure of the M2 channel-lining segment from the nicotinic acetylcholine receptor
Montal, M; Opella, S J
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane alpha-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12 degrees relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 A at its narrowest, to 8.6 A at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.
PMID: 12409201
ISSN: 0006-3002
CID: 552792
Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts
Wang, Fei; Hansen, Rhonda K; Radisky, Derek; Yoneda, Toshiyuki; Barcellos-Hoff, Mary Helen; Petersen, Ole W; Turley, Eva A; Bissell, Mina J
BACKGROUND: We previously used a three-dimensional (3D) reconstituted basement membrane (rBM) assay to demonstrate that tumorigenic HMT-3522 T4-2 human breast cells can be induced to form morphologically normal structures ('reversion') by treatment with inhibitors of beta1 integrin, the epidermal growth factor receptor (EGFR), or mitogen-activated protein kinase (MAPK). We have now used this assay to identify reversion and/or death requirements of several more aggressive human breast cancer cell lines. METHODS: Breast tumor cell lines MCF7, Hs578T, and MDA-MB-231 were cultured in 3D rBM and treated with inhibitors of beta1 integrin, MAPK, or phosphatidylinositol 3-kinase (PI3K). MDA-MB-231 cells, which lack E-cadherin, were transfected with an E-cadherin cDNA. The extent of reversion was assessed by changes in morphology and polarity, growth in 3D rBM or soft agar, level of invasiveness, and tumor formation in nude mice. RESULTS: All three cell lines showed partial reversion (MCF7 the greatest and Hs578T the least) of tumorigenic properties treated with a single beta1 integrin, MAPK, or PI3K inhibitor. Combined inhibition of beta1 integrin and either PI3K or MAPK resulted in nearly complete phenotypic reversion (MDA-MB-231, MCF7) or in cell death (Hs578T). E-cadherin-transfected MDA-MB-231 cells showed partial reversion, but exposure of the transfectants to an inhibitor of beta1 integrin, PI3K, or MAPK led to nearly complete reversion. CONCLUSION: The 3D rBM assay can be used to identify signaling pathways that, when manipulated in concert, can lead to the restoration of morphologically normal breast structures or to death of the tumor cells, even highly metastatic cells. This approach may be useful to design therapeutic intervention strategies for aggressive breast cancers
PMCID:2975573
PMID: 12359858
ISSN: 0027-8874
CID: 83147
A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening
Moon, Ho-Sang; Jacobson, Eric M; Khersonsky, Sonya M; Luzung, Michael R; Walsh, Daniel P; Xiong, Wennan; Lee, Jae Wook; Parikh, Puja B; Lam, Jennifer C; Kang, Tae-Wook; Rosania, Gustavo R; Schier, Alexander F; Chang, Young-Tae
The first orthogonal combinatorial synthesis of a high-purity triazine library was demonstrated. Novel triazine-based microtubule inhibitors were discovered by an efficient zebrafish embryo screening and in vitro microtubule polymerization assay.
PMID: 12296721
ISSN: 0002-7863
CID: 177411
Lysophosphatidylcholine stimulates monocyte chemoattractant protein-1 gene expression in rat aortic smooth muscle cells
Rong, James X; Berman, Joan W; Taubman, Mark B; Fisher, Edward A
OBJECTIVE: Monocyte chemoattractant protein (MCP)-1 is a proatherogenic factor that is responsible for approximately 60% of plaque macrophages in mouse models of atherosclerosis. We investigated whether lysophosphatidylcholine (LPC), enriched in oxidized low density lipoprotein, can modulate the expression of MCP-1 in arterial wall cells. METHODS AND RESULTS: LPC induced a 3-fold increase in MCP-1 mRNA in rat vascular smooth muscle cells (VSMCs) in a time- and dose-dependent manner. Nuclear runon analysis showed that this increase was attributable to increased MCP-1 gene transcription. There was a 2-fold increase in MCP-1 protein in the conditioned media of cells treated with LPC. LPC-associated increases of MCP-1 mRNA and protein were similar to those produced by platelet-derived growth factor-BB, a known inducer of MCP-1. Analyses of the MCP-1 promoter in transiently transfected VSMCs indicated an LPC-responsive element(s) between base pairs -146 and -261 (relative to transcription initiation). Further studies suggested that LPC-induced MCP-1 expression partially involves mitogen-activated protein kinase/extracellular signal-regulated kinase, a tyrosine kinase(s), and (to a lesser extent) protein kinase C but not the activation of the platelet-derived growth factor receptor. CONCLUSIONS: LPC stimulates MCP-1 expression at the transcriptional level in VSMCs, suggesting a molecular mechanism by which LPC contributes to the atherogenicity of oxidized low density lipoprotein
PMID: 12377739
ISSN: 1524-4636
CID: 37278
Susceptibility to polyomavirus-induced tumors in inbred mice: role of innate immune responses
Velupillai, Palanivel; Carroll, John P; Benjamin, Thomas L
Mice of the PERA/Ei strain (PE mice) are highly susceptible to tumor induction by polyomavirus and transmit their susceptibility in a dominant manner in crosses with resistant C57BR/cdJ mice (BR mice). BR mice respond to polyomavirus infection with a type 1 cytokine response and develop effective cell-mediated immunity to the virus-induced tumors. By enumerating virus-specific CD8(+) T cells and measuring cytokine responses, we show that the susceptibility of PE mice is due to the absence of a type 1 cytokine response and a concomitant failure to sustain virus-specific cytotoxic T lymphocytes. (PE x BR)F(1) mice showed an initial type 1 response that became skewed toward type 2. Culture supernatants of splenocytes from infected PE mice stimulated in vitro contained high levels of interleukin-10 and no detectable gamma interferon, while those from BR mice showed the opposite pattern. Differences in the innate immune response to polyomavirus by antigen-presenting cells in PE mice and BR mice led to polarization of T-cell cytokine responses. Adherent cells from spleens of infected BR mice produced high levels of interleukin-12, while those from infected PE and F(1) mice produced predominantly interleukin-10. PE and F(1) mice infected by polyomavirus responded with increases in antigen-presenting cells expressing B7.2 costimulatory molecules, whereas BR mice responded with increased expression of B7.1. Administration of recombinant interleukin-12 along with virus resulted in partial protection of PE mice and provided complete protection against tumor development in F(1) animals.
PMCID:136524
PMID: 12208944
ISSN: 0022-538x
CID: 1405132
Channels of communication in the ovary
Wassarman, Paul M
PMID: 12479607
ISSN: 1465-7392
CID: 1100252
Calcium channel blockers inhibit galvanotaxis in human keratinocytes
Trollinger, Donna R; Isseroff, R Rivkah; Nuccitelli, Richard
Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al., 1998; J Invest Dermatol 111:751-756). Here we further investigate the role of calcium influx on the directionality and migration speed of keratinocytes during electric field exposure with the use of Ca(2+) channel blockers. A constant, physiological electric field strength of 100 mV/mm was imposed on the cultured cells for 1 h. To determine the role of calcium influx during galvanotaxis we tested the effects of the voltage-dependent cation channel blockers, verapamil and amiloride, as well as the inorganic Ca(2+) channel blockers, Ni(2+) and Gd(3+) and the Ca(2+) substitute, Sr(2+), on the speed and directionality of keratinocyte migration during galvanotaxis. Neither amiloride (10 microM) nor verapamil (10 microM) had any effect on the galvanotaxis response. Therefore, calcium influx through amiloride-sensitive channels is not required for galvanotaxis, and membrane depolarization via K(+) channel activity is also not required. In contrast, Sr(2+) (5 mM), Ni(2+) (1-5 mM), and Gd(3+) (100 microM) all significantly inhibit the directional migratory response to some degree. While Sr(2+) strongly inhibits directed migration, the cells exhibit nearly normal migration speeds. These findings suggest that calcium influx through Ca(2+) channels is required for directed migration of keratinocytes during galvanotaxis and that directional migration and migration speed are probably controlled by separate mechanisms
PMID: 12209874
ISSN: 0021-9541
CID: 132995
Sex hormones and neural mechanisms
Keefe, David L
Sex steroids play important and diverse roles in the regulation of structure and function of the central nervous system. Early in life, steroids shape the structure of sensitive areas of the brain, especially those involved in the control of reproductive behavior and ovarian function. Original studies demonstrating organizing effects of steroids on the brain were carried out in rodents, but more recently these studies have been extended to primates, including humans. Throughout life, sex steroids regulate neural function by influencing steroid receptor-bearing neurons and by influencing neurons via steroid receptor-independent mechanisms. Sex steroid receptors have been identified in the brain, especially in the phylogenetically ancient structures that regulate reproductive behavior. Sex steroids that affect neural function can originate peripherally from the brain and/or adrenal gland, and can be synthesized within the brain itself. A number of neurally active progestogens and androgens are synthesized de novo in the brain, and estrogens can be converted within the brain from androgens by the enzyme aromatase. Thus, ovarian and central nervous system sex steroids play important roles in regulating reproductive behavior by regulating neural structure and function
PMID: 12238606
ISSN: 0004-0002
CID: 102012
Estrogen effects on osmotic regulation of AVP and fluid balance
Stachenfeld, Nina S; Keefe, David L
To determine estrogen effects on osmotic regulation of arginine vasopressin (AVP) and body fluids, we suppressed endogenous estrogen and progesterone using the gonadotropin-releasing hormone (GnRH) analog leuprolide acetate (GnRHa). Subjects were assigned to one of two groups: 1) GnRHa alone, then GnRHa + estrogen (E, n = 9, 25 +/- 1 yr); 2) GnRHa alone, then GnRHa + estrogen with progesterone (E/P, n = 6, 26 +/- 3). During GnRHa alone and with hormone treatment, we compared AVP and body fluid regulatory responses to 3% NaCl infusion (HSI, 120 min, 0.1 ml. min(-1). kg body wt(-1)), drinking (30 min, 15 ml/kg body wt), and recovery (60 min of seated rest). Plasma [E(2)] increased from 23.9 to 275.3 pg/ml with hormone treatments. Plasma [P(4)] increased from 0.6 to 5.7 ng/ml during E/P and was unchanged (0.4 to 0.6 ng/ml) during E. Compared with GnRHa alone, E reduced osmotic AVP release threshold (275 +/- 4 to 271 +/- 4 mosmol/kg, P < 0.05), and E/P reduced the AVP increase in response during HSI (6.0 +/- 1.3 to 4.2 +/- 0.6 pg/ml at the end of HSI), but free water clearance was unaffected in either group. Relative to GnRHa, pre-HSI plasma renin activity (PRA) was greater during E (0.8 +/- 0.1 vs. 1.2 +/- 0.2 ng ANG I. ml(-1). h(-1)) but not after HSI or recovery. PRA was greater than GnRHa during E/P at baseline (1.1 +/- 0.2 vs. 2.5 +/- 0.6) and after HSI (0.6 +/- 0.1 vs. 1.1 +/- 1.1) and recovery (0.5 +/- 0.1 vs. 1.3 +/- 0.2 ng ANG I. ml(-1). h(-1)). Baseline fractional excretion of sodium was unaffected by E or E/P but was attenuated by the end of recovery for both E (3.3 +/- 0.6 vs. 2.4 +/- 0.4%) and E/P (2.8 +/- 0.4 vs 1.7 +/- 0.4%, GnRHa alone and with hormone treatment, respectively). Fluid retention increased with both hormone treatments. Renal sensitivity to AVP may be lower during E due to intrarenal effects on water and sodium excretion. E/P increased sodium retention and renin-angiotensin-aldosterone stimulation
PMID: 12217888
ISSN: 0193-1849
CID: 102013