Try a new search

Format these results:

Searched for:

person:ZL1887 or SIDHUI01 or SERRAJ10 or RODRIJ92 or YANGY15 or CHOH09 or HAOY04 or KHODAA01 or ZHOUH05 or ID460 or VASUDV02 or MISHRP03 or NADORB01 or ZHUH05 or at570 or COUDRN01 or MARIEC02 or BLANEP01

active:yes

exclude-minors:true

Total Results:

270


The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation

Kim, Eugene E; Shekhar, Akshay; Ramachandran, Jayalakshmi; Khodadadi-Jamayran, Alireza; Liu, Fang-Yu; Zhang, Jie; Fishman, Glenn I
Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.
PMCID:10652039
PMID: 37787076
ISSN: 1477-9129
CID: 5606432

CRISPR screen identifies CEBPB as contributor to dyskeratosis congenita fibroblast senescence via augmented inflammatory gene response

Westin, Erik R; Khodadadi-Jamayran, Alireza; Pham, Linh K; Tung, Moon Ley; Goldman, Frederick D
Aging is the consequence of intra- and extracellular events that promote cellular senescence. Dyskeratosis congenita (DC) is an example of a premature aging disorder caused by underlying telomere/telomerase-related mutations. Cells from these patients offer an opportunity to study telomere-related aging and senescence. Our previous work has found that telomere shortening stimulates DNA damage responses (DDRs) and increases reactive oxygen species (ROS), thereby promoting entry into senescence. This work also found that telomere elongation via TERT expression, the catalytic component of the telomere-elongating enzyme telomerase, or p53 shRNA could decrease ROS by disrupting this telomere-DDR-ROS pathway. To further characterize this pathway, we performed a CRISPR/Cas9 knockout screen to identify genes that extend life span in DC cells. Of the cellular clones isolated due to increased life span, 34% had a guide RNA (gRNA) targeting CEBPB, while gRNAs targeting WSB1, MED28, and p73 were observed multiple times. CEBPB is a transcription factor associated with activation of proinflammatory response genes suggesting that inflammation may be present in DC cells. The inflammatory response was investigated using RNA sequencing to compare DC and control cells. Expression of inflammatory genes was found to be significantly elevated (P < 0.0001) in addition to a key subset of these inflammation-related genes [IL1B, IL6, IL8, IL12A, CXCL1 (GROa), CXCL2 (GROb), and CXCL5]. which are regulated by CEBPB. Exogenous TERT expression led to downregulation of RNA/protein CEBPB expression and the inflammatory response genes suggesting a telomere length-dependent mechanism to regulate CEBPB. Furthermore, unlike exogenous TERT and p53 shRNA, CEBPB shRNA did not significantly decrease ROS suggesting that CEBPB's contribution in DC cells' senescence is ROS independent. Our findings demonstrate a key role for CEBPB in engaging senescence by mobilizing an inflammatory response within DC cells.
PMCID:10627266
PMID: 37717172
ISSN: 2160-1836
CID: 5606352

Digital spatial profiling to predict recurrence in grade 3 stage I lung adenocarcinoma

Chang, Stephanie H; Mezzano-Robinson, Valeria; Zhou, Hua; Moreira, Andre; Pillai, Raymond; Ramaswami, Sitharam; Loomis, Cynthia; Heguy, Adriana; Tsirigos, Aristotelis; Pass, Harvey I
OBJECTIVE:Early-stage lung adenocarcinoma is treated with local therapy alone, although patients with grade 3 stage I lung adenocarcinoma have a 50% 5-year recurrence rate. Our objective is to determine if analysis of the tumor microenvironment can create a predictive model for recurrence. METHODS:Thirty-four patients with grade 3 stage I lung adenocarcinoma underwent surgical resection. Digital spatial profiling was used to perform genomic (n = 31) and proteomic (n = 34) analyses of pancytokeratin positive and negative tumor cells. K-means clustering was performed on the top 50 differential genes and top 20 differential proteins, with Kaplan-Meier recurrence curves based on patient clustering. External validation of high-expression genes was performed with Kaplan-Meier plotter. RESULTS:There were no significant clinicopathologic differences between patients who did (n = 14) and did not (n = 20) have recurrence. Median time to recurrence was 806 days; median follow-up with no recurrence was 2897 days. K-means clustering of pancytokeratin positive genes resulted in a model with a Kaplan-Meier curve with concordance index of 0.75. K-means clustering for pancytokeratin negative genes was less successful at differentiating recurrence (concordance index 0.6). Genes upregulated or downregulated for recurrence were externally validated using available public databases. Proteomic data did not reach statistical significance but did internally validate the genomic data described. CONCLUSIONS:Genomic difference in lung adenocarcinoma may be able to predict risk of recurrence. After further validation, stratifying patients by this risk may help guide who will benefit from adjuvant therapy.
PMID: 37890657
ISSN: 1097-685x
CID: 5620342

A Population of Tumor-Infiltrating CD4+ T Cells Co-Expressing CD38 and CD39 Is Associated with Checkpoint Inhibitor Resistance

Mitra, Ankita; Thompson, Brian; Strange, Ann; Amato, Carol M; Vassallo, Melinda; Dolgalev, Igor; Hester-McCullough, Jonathan; Muramatsu, Tomoaki; Kimono, Diana; Puranik, Amrutesh S; Weber, Jeffrey S; Woods, David
PURPOSE:We previously showed that elevated frequencies of peripheral blood CD3+CD4+CD127-GARP-CD38+CD39+ T cells were associated with checkpoint immunotherapy resistance in patients with metastatic melanoma. In the present study, we sought to further investigate this population of ectoenzyme-expressing T cells (Teee). EXPERIMENTAL DESIGN:Teee derived from the peripheral blood of patients with metastatic melanoma were evaluated by bulk RNA-sequencing (RNA-seq) and flow cytometry. The presence of Teee in the tumor microenvironment was assessed using publically available single-cell RNA-seq datasets of melanoma, lung, and bladder cancers along with multispectral immunofluorescent imaging of melanoma patient formalin-fixed, paraffin-embedded specimens. Suppressive function of Teee was determined by an in vitro autologous suppression assay. RESULTS:Teee had phenotypes associated with proliferation, apoptosis, exhaustion, and high expression of inhibitory molecules. Cells with a Teee gene signature were present in tumors of patients with melanoma, lung, and bladder cancers. CD4+ T cells co-expressing CD38 and CD39 in the tumor microenvironment were preferentially associated with Ki67- CD8+ T cells. Co-culture of patient Teee with autologous T cells resulted in decreased proliferation of target T cells. High baseline intratumoral frequencies of Teee were associated with checkpoint immunotherapy resistance and poor overall survival in patients with metastatic melanoma. CONCLUSIONS:These results demonstrate that a novel population of CD4+ T cells co-expressing CD38 and CD39 is found both in the peripheral blood and tumor of patients with melanoma and is associated with checkpoint immunotherapy resistance.
PMCID:10592215
PMID: 37505479
ISSN: 1557-3265
CID: 5613952

Multiomic mapping of acquired chromosome 1 copy number and structural variants to identify therapeutic vulnerabilities in multiple myeloma

Boyle, Eileen M; Blaney, Patrick; Stoeckle, James H; Wang, Yubao; Ghamlouch, Hussein; Gagler, Dylan; Braunstein, Marc; Williams, Louis; Tenenbaum, Avital; Siegel, Ariel; Chen, Xiaoyi; Varma, Gaurav; Avigan, Jason; Li, Alexander; Jinsi, Monica; Kaminetzky, David; Arbini, Arnaldo; Montes, Lydia; Corre, Jill; Rustad, Even H; Landgren, Ola; Maura, Francesco; Walker, Brian A; Bauer, Michael; Bruno, Benedetto; Tsirigos, Aristotelis; Davies, Faith E; Morgan, Gareth J
PURPOSE/OBJECTIVE:Chromosome 1 (chr1) copy number abnormalities (CNAs) and structural variants (SV) are frequent in newly diagnosed multiple myeloma (NDMM) and associate with a heterogeneous impact on outcome the drivers of which are largely unknown. EXPERIMENTAL DESIGN/METHODS:A multiomic approach comprising CRISPR, gene mapping of CNA and SV, methylation, expression, and mutational analysis was used to document the extent of chr1 molecular variants and their impact on pathway utilisation. RESULTS:We identified two distinct groups of gain(1q): focal gains associated with limited gene expression changes and a neutral prognosis, and whole-arm gains, which associate with substantial gene expression changes, complex genetics and an adverse prognosis. CRISPR identified a number of dependencies on chr1 but only limited variants associated with acquired CNAs. We identified seven regions of deletion, nine of gain, three of chromothripsis (CT) and two of templated-insertion (TI), which contain a number of potential drivers. An additional mechanism involving hypomethylation of genes at 1q may contribute to the aberrant gene expression of a number of genes. Expression changes associated with whole-arm gains were substantial and gene set enrichment analysis identified metabolic processes, apoptotic resistance, signaling via the MAPK pathway, and upregulation of transcription factors as being key drivers of the adverse prognosis associated with these variants. CONCLUSIONS:Multiple layers of genetic complexity impact the phenotype associated with CNAs on chr1 to generate its associated clinical phenotype. Whole-arm gains of 1q are the critically important prognostic group that deregulate multiple pathways, which may offer therapeutic vulnerabilities.
PMID: 37449980
ISSN: 1557-3265
CID: 5537862

Loss of Notch signaling in skeletal stem cells enhances bone formation with aging

Remark, Lindsey H; Leclerc, Kevin; Ramsukh, Malissa; Lin, Ziyan; Lee, Sooyeon; Dharmalingam, Backialakshmi; Gillinov, Lauren; Nayak, Vasudev V; El Parente, Paulo; Sambon, Margaux; Atria, Pablo J; Ali, Mohamed A E; Witek, Lukasz; Castillo, Alesha B; Park, Christopher Y; Adams, Ralf H; Tsirigos, Aristotelis; Morgani, Sophie M; Leucht, Philipp
Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.
PMCID:10522593
PMID: 37752132
ISSN: 2095-4700
CID: 5608842

De novo assembly and annotation of the singing mouse genome

Smith, Samantha K; Frazel, Paul W; Khodadadi-Jamayran, Alireza; Zappile, Paul; Marier, Christian; Okhovat, Mariam; Brown, Stuart; Long, Michael A; Heguy, Adriana; Phelps, Steven M
BACKGROUND:Developing genomic resources for a diverse range of species is an important step towards understanding the mechanisms underlying complex traits. Specifically, organisms that exhibit unique and accessible phenotypes-of-interest allow researchers to address questions that may be ill-suited to traditional model organisms. We sequenced the genome and transcriptome of Alston's singing mouse (Scotinomys teguina), an emerging model for social cognition and vocal communication. In addition to producing advertisement songs used for mate attraction and male-male competition, these rodents are diurnal, live at high-altitudes, and are obligate insectivores, providing opportunities to explore diverse physiological, ecological, and evolutionary questions. RESULTS:Using PromethION, Illumina, and PacBio sequencing, we produced an annotated genome and transcriptome, which were validated using gene expression and functional enrichment analyses. To assess the usefulness of our assemblies, we performed single nuclei sequencing on cells of the orofacial motor cortex, a brain region implicated in song coordination, identifying 12 cell types. CONCLUSIONS:These resources will provide the opportunity to identify the molecular basis of complex traits in singing mice as well as to contribute data that can be used for large-scale comparative analyses.
PMCID:10521431
PMID: 37749493
ISSN: 1471-2164
CID: 5606392

Deep learning integrates histopathology and proteogenomics at a pan-cancer level

Wang, Joshua M; Hong, Runyu; Demicco, Elizabeth G; Tan, Jimin; Lazcano, Rossana; Moreira, Andre L; Li, Yize; Calinawan, Anna; Razavian, Narges; Schraink, Tobias; Gillette, Michael A; Omenn, Gilbert S; An, Eunkyung; Rodriguez, Henry; Tsirigos, Aristotelis; Ruggles, Kelly V; Ding, Li; Robles, Ana I; Mani, D R; Rodland, Karin D; Lazar, Alexander J; Liu, Wenke; Fenyö, David; ,
We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.
PMCID:10518635
PMID: 37582371
ISSN: 2666-3791
CID: 5590072

A membrane-associated MHC-I inhibitory axis for cancer immune evasion

Chen, Xufeng; Lu, Qiao; Zhou, Hua; Liu, Jia; Nadorp, Bettina; Lasry, Audrey; Sun, Zhengxi; Lai, Baoling; Rona, Gergely; Zhang, Jiangyan; Cammer, Michael; Wang, Kun; Al-Santli, Wafa; Ciantra, Zoe; Guo, Qianjin; You, Jia; Sengupta, Debrup; Boukhris, Ahmad; Zhang, Hongbing; Liu, Cheng; Cresswell, Peter; Dahia, Patricia L M; Pagano, Michele; Aifantis, Iannis; Wang, Jun
Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.
PMID: 37557169
ISSN: 1097-4172
CID: 5602312

Haplodeficiency of the 9p21 Tumor Suppressor Locus Causes Myeloid Disorders Driven by the Bone Marrow Microenvironment

Feng, Jue; Hsu, Pei-Feng; Esteva, Eduardo; Labella, Rossella; Wang, Yueyang; Khodadadi-Jamayran, Alireza; Pucella, Joseph Nicholas; Liu, Cynthia Z; Arbini, Arnaldo A; Tsirigos, Aristotelis; Kousteni, Stavroula; Reizis, Boris
The chromosome 9p21 locus comprises several tumor suppressor genes including MTAP, CDKN2A and CDKN2B, and its homo- or heterozygous deletion is associated with reduced survival in multiple cancer types. We report that mice with germline monoallelic deletion or induced biallelic deletion of the 9p21-syntenic locus (9p21s) developed a fatal myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN)-like disease associated with aberrant trabecular bone formation and/or fibrosis in the bone marrow (BM). Reciprocal BM transfers and conditional targeting of 9p21s suggested that the disease originates in the BM stroma. Single-cell analysis of 9p21s-deficient BM stroma revealed the expansion of chondrocyte and osteogenic precursors, reflected in increased osteogenic differentiation in vitro. It also showed reduced expression of factors maintaining hematopoietic stem/progenitor cells, including Cxcl12. Accordingly, 9p21s-deficient mice showed reduced levels of circulating Cxcl12 and concomitant upregulation of the pro-fibrotic chemokine Cxcl13 and osteogenesis- and fibrosis-related multifunctional glycoprotein Osteopontin (OPN)/Spp1. Our study highlights the potential of mutations in the BM microenvironment to drive MDS/MPN-like disease.
PMID: 37267505
ISSN: 1528-0020
CID: 5543492