Try a new search

Format these results:

Searched for:

person:arakit01

in-biosketch:yes

Total Results:

38


An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival

Yang, Wentian; Klaman, Lori D; Chen, Binbin; Araki, Toshiyuki; Harada, Hisashi; Thomas, Sheila M; George, Elizabeth L; Neel, Benjamin G
Little is known about how growth factors control tissue stem cell survival and proliferation. We analyzed mice with a null mutation of Shp2 (Ptpn11), a key component of receptor tyrosine kinase signaling. Null embryos die peri-implantation, much earlier than mice that express an Shp2 truncation. Shp2 null blastocysts initially develop normally, but they subsequently exhibit inner cell mass death, diminished numbers of trophoblast giant cells, and failure to yield trophoblast stem (TS) cell lines. Molecular markers reveal that the trophoblast lineage, which requires fibroblast growth factor-4 (FGF4), is specified but fails to expand normally. Moreover, deletion of Shp2 in TS cells causes rapid apoptosis. We show that Shp2 is required for FGF4-evoked activation of the Src/Ras/Erk pathway that culminates in phosphorylation and destabilization of the proapoptotic protein Bim. Bim depletion substantially blocks apoptosis and significantly restores Shp2 null TS cell proliferation, thereby establishing a key mechanism by which FGF4 controls stem cell survival.
PMID: 16516835
ISSN: 1534-5807
CID: 1364632

Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation

Araki, Toshiyuki; Mohi, M Golam; Ismat, Fraz A; Bronson, Roderick T; Williams, Ifor R; Kutok, Jeffery L; Yang, Wentian; Pao, Lily I; Gilliland, D Gary; Epstein, Jonathan A; Neel, Benjamin G
Noonan syndrome is a common human autosomal dominant birth defect, characterized by short stature, facial abnormalities, heart defects and possibly increased risk of leukemia. Mutations of Ptpn11 (also known as Shp2), which encodes the protein-tyrosine phosphatase Shp2, occur in approximately 50% of individuals with Noonan syndrome, but their molecular, cellular and developmental effects, and the relationship between Noonan syndrome and leukemia, are unclear. We generated mice expressing the Noonan syndrome-associated mutant D61G. When homozygous, the D61G mutant is embryonic lethal, whereas heterozygotes have decreased viability. Surviving Ptpn11(D61G/+) embryos ( approximately 50%) have short stature, craniofacial abnormalities similar to those in Noonan syndrome, and myeloproliferative disease. Severely affected Ptpn11(D61G/+) embryos ( approximately 50%) have multiple cardiac defects similar to those in mice lacking the Ras-GAP protein neurofibromin. Their endocardial cushions have increased Erk activation, but Erk hyperactivation is cell and pathway specific. Our results clarify the relationship between Noonan syndrome and leukemia and show that a single Ptpn11 gain-of-function mutation evokes all major features of Noonan syndrome by acting on multiple developmental lineages in a gene dosage-dependent and pathway-selective manner.
PMID: 15273746
ISSN: 1078-8956
CID: 1364812

Macrocyclization in the design of non-phosphorus-containing Grb2 SH2 domain-binding ligands

Shi, Zhen-Dan; Wei, Chang-Qing; Lee, Kyeong; Liu, Hongpeng; Zhang, Manchao; Araki, Toshiyuki; Roberts, Lindsey R; Worthy, Karen M; Fisher, Robert J; Neel, Benjamin G; Kelley, James A; Yang, Dajun; Burke, Terrence R Jr
Macrocyclization from the phosphotyrosyl (pTyr) mimetic's beta-position has previously been shown to enhance Grb2 SH2 domain-binding affinity of phosphonate-based analogues. The current study examined the effects of such macrocyclization using a dicarboxymethyl-based pTyr mimetic. In extracellular assays affinity was enhanced approximately 5-fold relative to an open-chain congener. Enhancement was also observed in whole-cell assays examining blockade of Grb2 binding to the erbB-2 protein-tyrosine kinase.
PMID: 15056012
ISSN: 0022-2623
CID: 1364842

Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment

Zhang, Si Qing; Yang, Wentian; Kontaridis, Maria I; Bivona, Trever G; Wen, Gengyun; Araki, Toshiyuki; Luo, Jincai; Thompson, Julie A; Schraven, Burkhart L; Philips, Mark R; Neel, Benjamin G
The protein-tyrosine phosphatase Shp2 plays an essential role in growth factor and integrin signaling, and Shp2 mutations cause developmental defects and/or malignancy. Previous work has placed Shp2 upstream of Ras. However, the mechanism of Shp2 action and its substrate(s) are poorly defined. Additional Shp2 functions downstream of, or parallel to, Ras/Erk activation also are proposed. Here, we show that Shp2 promotes Src family kinase (SFK) activation by regulating the phosphorylation of the Csk regulator PAG/Cbp, thereby controlling Csk access to SFKs. In Shp2-deficient cells, SFK inhibitory C-terminal tyrosines are hyperphosphorylated, and the tyrosyl phosphorylation of multiple SFK substrates, including Plcgamma1, is decreased. Decreased Plcgamma1 phosphorylation leads to defective Ras activation on endomembranes, and may help account for impaired Erk activation in Shp2-deficient cells. Decreased phosphorylation/activation of other SFK substrates may explain additional consequences of Shp2 deficiency, including altered cell spreading, stress fibers, focal adhesions, and motility
PMID: 14967142
ISSN: 1097-2765
CID: 64125

Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors

Araki, Toshiyuki; Nawa, Hiroyuki; Neel, Benjamin G
The protein-tyrosine phosphatase Shp2 is required for normal activation of the ERK mitogen-activated protein kinase in multiple receptor tyrosine kinase signaling pathways. In fibroblasts, Shp2 undergoes phosphorylation at two C-terminal tyrosyl residues in response to some (fibroblast growth factor and platelet-derived growth factor (PDGF)) but not all (epidermal growth factor and insulin-like growth factor) growth factors. Whereas the catalytic activity of Shp2 is required for all Shp2 actions, the effect of tyrosyl phosphorylation on Shp2 function has been controversial. To clarify the role of Shp2 tyrosyl phosphorylation, we infected Shp2-mutant fibroblasts with retroviruses expressing wild type Shp2 or mutants of either (Y542F or Y580F) or both (Y542F,Y580F) C-terminal tyrosines. Compared with wild type cells, ERK activation was decreased in Y542F- or Y580F-infected cells in response to fibroblast growth factor and PDGF but not the epidermal growth factor. Mutation of both phosphorylation sites resulted in a further decrease in growth factor-evoked ERK activation, although not to the level of the vector control. Immunoblot analyses confirm that Tyr-542 and Tyr-580 are the major sites of Shp2 tyrosyl phosphorylation and that Tyr-542 is the major Grb2 binding site. However, studies with antibodies specific for individual Shp2 phosphorylation sites reveal unexpected complexity in the mechanism of Shp2 tyrosyl phosphorylation by different receptor tyrosine kinases. Moreover, because Y580F mutants retain nearly wild type Grb2-binding ability, yet exhibit defective PDGF-evoked ERK activation, our results show that the association of Grb2 with Shp2 is not sufficient for promoting full ERK activation in response to these growth factors, thereby arguing strongly against the "Grb2-adapter" model of Shp2 action.
PMID: 12923167
ISSN: 0021-9258
CID: 1364902

Nerve growth factor-induced glutamate release is via p75 receptor, ceramide, and Ca(2+) from ryanodine receptor in developing cerebellar neurons

Numakawa, Tadahiro; Nakayama, Hitoshi; Suzuki, Shingo; Kubo, Takekazu; Nara, Futoshi; Numakawa, Yumiko; Yokomaku, Daisaku; Araki, Toshiyuki; Ishimoto, Tetsuya; Ogura, Akihiko; Taguchi, Takahisa
Very little is known about the contribution of a low affinity neurotrophin receptor, p75, to neurotransmitter release. Here we show that nerve growth factor (NGF) induced a rapid release of glutamate and an increase of Ca2+ in cerebellar neurons through a p75-dependent pathway. The NGF-induced release occurred even in the presence of the Trk inhibitor K252a. The release caused by NGF but not brain-derived neurotrophic factor was enhanced in neurons overexpressing p75. Further, after transfection of p75-small interfering RNA, which down-regulated the endogenous p75 expression, the NGF-induced release was inhibited, suggesting that the NGF-induced glutamate release was through p75. We found that the NGF-increased Ca2+ was derived from the ryanodine-sensitive Ca2+ receptor and that the NGF-increased Ca2+ was essential for the NGF-induced glutamate release. Furthermore, scyphostatin, a sphingomyelinase inhibitor, blocked the NGF-dependent Ca2+ increase and glutamate release, suggesting that a ceramide produced by sphingomyelinase was required for the NGF-stimulated Ca2+ increase and glutamate release. This action of NGF only occurred in developing neurons whereas the brain-derived neurotrophic factor-mediated Ca2+ increase and glutamate release was observed at the mature neuronal stage. Thus, we demonstrate that NGF-mediated neurotransmitter release via the p75-dependent pathway has an important role in developing neurons.
PMID: 12902347
ISSN: 0021-9258
CID: 1908452

Shp-2 positively regulates brain-derived neurotrophic factor-promoted survival of cultured ventral mesencephalic dopaminergic neurons through a brain immunoglobulin-like molecule with tyrosine-based activation motifs/Shp substrate-1

Takai, Satomi; Yamada, Masashi; Araki, Toshiyuki; Koshimizu, Hisatsugu; Nawa, Hiroyuki; Hatanaka, Hiroshi
To examine the roles of Shp-2, a cytoplasmic tyrosine phosphatase, in neuronal survival, we generated and used recombinant adenoviruses expressing wild type and phosphatase-inactive (C/S), phosphatase domain-deficient (delta P) and constitutively active (D61A and E76A) mutants of Shp-2. We found that wild-type Shp-2 enhanced brain-derived neurotrophic factor (BDNF)-promoted survival of cultured ventral mesencephalic dopaminergic neurons. In contrast, the C/S and delta P mutants of Shp-2 did not affect survival. In addition, the constitutively active D61A and E76A mutants mimicked BDNF and promoted survival. Furthermore, to examine the effects of BIT/SHPS-1, a substrate of Shp-2, on the BDNF-promoted survival, we generated adenovirus vectors expressing wild-type BIT/SHPS-1 and its 4F mutant in which all tyrosine residues in the cytoplasmic domain of BIT/SHPS-1 were replaced with phenylalanine. We found that BDNF-promoted survival of cultured mesencephalic dopaminergic neurons was enhanced by expression of the 4F mutant but not of wild-type BIT/SHPS-1. In addition, we found that co-expression of wild-type BIT/SHPS-1 with Shp-2 significantly enhanced the survival-promoting effect of BDNF on cultured mesencephalic dopaminergic neurons. These results indicated that Shp-2 positively regulates the survival-promoting effect of BDNF on cultured ventral mesencephalic dopaminergic neurons. Dephosphorylation of BIT/SHPS-1 by Shp-2 may participate in BDNF-stimulated survival signaling.
PMID: 12124436
ISSN: 0022-3042
CID: 1908482

Expression of CD47/integrin-associated protein induces death of cultured cerebral cortical neurons

Koshimizu, Hisatsugu; Araki, Toshiyuki; Takai, Satomi; Yokomaku, Daisaku; Ishikawa, Yasuyuki; Kubota, Misae; Sano, Shin-ichiro; Hatanaka, Hiroshi; Yamada, Masashi
The death and survival of neuronal cells are regulated by various signaling pathways during development of the brain and in neuronal diseases. Previously, we demonstrated that the neuronal adhesion molecule brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is involved in brain-derived neurotrophic factor (BDNF)-promoted neuronal cell survival. Here, we report the apoptosis-inducing effect of CD47/integrin-associated protein (IAP), the heterophilic binding partner of BIT/SHPS-1, on neuronal cells. We generated a recombinant adenovirus vector expressing a neuronal form of CD47/IAP, and found that the expression of CD47/IAP by infection with CD47/IAP adenovirus induced the death of cultured cerebral cortical neurons. The numbers of TdT-mediated biotin-dUTP nick-end labelling (TUNEL)-positive neurons and of cells displaying apoptotic nuclei increased by expression of CD47/IAP. Neuronal cell death was prevented by the addition of the broad-spectrum caspase inhibitor Z-VAD-fmk. Furthermore, we observed that co-expression of CD47/IAP with BIT/SHPS-1 enhanced neuronal cell death, and that BDNF prevented it. These results suggest that CD47/IAP is involved in a novel pathway which regulates caspase-dependent apoptosis of cultured cerebral cortical neurons. CD47/IAP-induced death of cultured cortical neurons may be regulated by the interaction of CD47/IAP with BIT/SHPS-1 and by BDNF.
PMID: 12124426
ISSN: 0022-3042
CID: 1908492

Receptor-specific regulation of phosphatidylinositol 3'-kinase activation by the protein tyrosine phosphatase Shp2

Zhang, Si Qing; Tsiaras, William G; Araki, Toshiyuki; Wen, Gengyun; Minichiello, Liliana; Klein, Ruediger; Neel, Benjamin G
Receptor tyrosine kinases (RTKs) play distinct roles in multiple biological systems. Many RTKs transmit similar signals, raising questions about how specificity is achieved. One potential mechanism for RTK specificity is control of the magnitude and kinetics of activation of downstream pathways. We have found that the protein tyrosine phosphatase Shp2 regulates the strength and duration of phosphatidylinositol 3'-kinase (PI3K) activation in the epidermal growth factor (EGF) receptor signaling pathway. Shp2 mutant fibroblasts exhibit increased association of the p85 subunit of PI3K with the scaffolding adapter Gab1 compared to that for wild-type (WT) fibroblasts or Shp2 mutant cells reconstituted with WT Shp2. Far-Western analysis suggests increased phosphorylation of p85 binding sites on Gab1. Gab1-associated PI3K activity is increased and PI3K-dependent downstream signals are enhanced in Shp2 mutant cells following EGF stimulation. Analogous results are obtained in fibroblasts inducibly expressing dominant-negative Shp2. Our results suggest that, in addition to its role as a positive component of the Ras-Erk pathway, Shp2 negatively regulates EGF-dependent PI3K activation by dephosphorylating Gab1 p85 binding sites, thereby terminating a previously proposed Gab1-PI3K positive feedback loop. Activation of PI3K-dependent pathways following stimulation by other growth factors is unaffected or decreased in Shp2 mutant cells. Thus, Shp2 regulates the kinetics and magnitude of RTK signaling in a receptor-specific manner.
PMCID:133866
PMID: 12024020
ISSN: 0270-7306
CID: 1365012

Role of Shp2 tyrosine phosphatase in trophic effects of BDNF in cultured dopaminergic neurons of substantia nigra [Meeting Abstract]

Takai, S; Araki, T; Koshimizu, H; Hatanaka, H; Yamada, M
ISI:000180512100045
ISSN: 0099-6246
CID: 1909932