Try a new search

Format these results:

Searched for:

person:at570 or browns02 or kannak01 or rugglk01 or id460 or coudrn01 or haoy02 or kannal01 or kellys04 or khodaa01 or lhakht01 or vasudv02 or zhouh05 or heguya01 or jonesd28 or ueberb01

Total Results:

926


SETD2 mutations do not contribute to clonal fitness in response to chemotherapy in childhood B cell acute lymphoblastic leukemia

Contreras Yametti, Gloria P; Robbins, Gabriel; Chowdhury, Ashfiyah; Narang, Sonali; Ostrow, Talia H; Kilberg, Harrison; Greenberg, Joshua; Kramer, Lindsay; Raetz, Elizabeth; Tsirigos, Aristotelis; Evensen, Nikki A; Carroll, William L
Mutations in genes encoding epigenetic regulators are commonly observed at relapse in B cell acute lymphoblastic leukemia (B-ALL). Loss-of-function mutations in SETD2, an H3K36 methyltransferase, have been observed in B-ALL and other cancers. Previous studies on mutated SETD2 in solid tumors and acute myelogenous leukemia support a role in promoting resistance to DNA damaging agents. We did not observe chemoresistance, an impaired DNA damage response, nor increased mutation frequency in response to thiopurines using CRISPR-mediated knockout in wild-type B-ALL cell lines. Likewise, restoration of SETD2 in cell lines with hemizygous mutations did not increase sensitivity. SETD2 mutations affected the chromatin landscape and transcriptional output that was unique to each cell line. Collectively our data does not support a role for SETD2 mutations in driving clonal evolution and relapse in B-ALL, which is consistent with the lack of enrichment of SETD2 mutations at relapse in most studies.
PMID: 37874744
ISSN: 1029-2403
CID: 5635112

3D Enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages

Murphy, Dylan; Salataj, Eralda; Di Giammartino, Dafne Campigli; Rodriguez-Hernaez, Javier; Kloetgen, Andreas; Garg, Vidur; Char, Erin; Uyehara, Christopher M; Ee, Ly-Sha; Lee, UkJin; Stadtfeld, Matthias; Hadjantonakis, Anna-Katerina; Tsirigos, Aristotelis; Polyzos, Alexander; Apostolou, Effie
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.
PMID: 38053013
ISSN: 1545-9985
CID: 5595532

Targeting pancreatic cancer metabolic dependencies through glutamine antagonism

Encarnación-Rosado, Joel; Sohn, Albert S W; Biancur, Douglas E; Lin, Elaine Y; Osorio-Vasquez, Victoria; Rodrick, Tori; González-Baerga, Diana; Zhao, Ende; Yokoyama, Yumi; Simeone, Diane M; Jones, Drew R; Parker, Seth J; Wild, Robert; Kimmelman, Alec C
Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.
PMID: 37814010
ISSN: 2662-1347
CID: 5604832

Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting

Chapman, Jessica R; Paukner, Max; Leser, Micheal; Teng, Kai Wen; Koide, Shohei; Holder, Marlene; Armache, Karim-Jean; Becker, Chris; Ueberheide, Beatrix; Brenowitz, Michael
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
PMID: 38049117
ISSN: 1520-6882
CID: 5595392

Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy

Mukhopadhyay, Suman; Huang, Hsin-Yi; Lin, Ziyan; Ranieri, Michela; Li, Shuai; Sahu, Soumyadip; Liu, Yingzhuo; Ban, Yi; Guidry, Kayla; Hu, Hai; Lopez, Alfonso; Sherman, Fiona; Tan, Yi Jer; Lee, Yeuan Ting; Armstrong, Amanda P; Dolgalev, Igor; Sahu, Priyanka; Zhang, Tinghu; Lu, Wenchao; Gray, Nathanael S; Christensen, James G; Tang, Tracy T; Velcheti, Vamsidhar; Khodadadi-Jamayran, Alireza; Wong, Kwok-Kin; Neel, Benjamin G
UNLABELLED:Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic. SIGNIFICANCE/UNASSIGNED:Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.
PMID: 37729426
ISSN: 1538-7445
CID: 5606372

mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection

Ivanova, Ellie N.; Shwetar, Jasmine; Devlin, Joseph C.; Buus, Terkild B.; Gray-Gaillard, Sophie; Koide, Akiko; Cornelius, Amber; Samanovic, Marie I.; Herrera, Alberto; Mimitou, Eleni P.; Zhang, Chenzhen; Karmacharya, Trishala; Desvignes, Ludovic; Ødum, Niels; Smibert, Peter; Ulrich, Robert J.; Mulligan, Mark J.; Koide, Shohei; Ruggles, Kelly V.; Herati, Ramin S.; Koralov, Sergei B.
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.
SCOPUS:85179086246
ISSN: 2589-0042
CID: 5620862

Generation of quality-controlled SARS-CoV-2 variant stocks

de Vries, Maren; Ciabattoni, Grace O; Rodriguez-Rodriguez, Bruno A; Crosse, Keaton M; Papandrea, Dominick; Samanovic, Marie I; Dimartino, Dacia; Marier, Christian; Mulligan, Mark J; Heguy, Adriana; Desvignes, Ludovic; Duerr, Ralf; Dittmann, Meike
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
PMID: 37833423
ISSN: 1750-2799
CID: 5604402

Intestinal microbiome and metabolome signatures in patients with chronic granulomatous disease

Chandrasekaran, Prabha; Han, Yu; Zerbe, Christa S; Heller, Theo; DeRavin, Suk See; Kreuzberg, Samantha A; Marciano, Beatriz E; Siu, Yik; Jones, Drew R; Abraham, Roshini S; Stephens, Michael C; Tsou, Amy M; Snapper, Scott; Conlan, Sean; Subramanian, Poorani; Quinones, Mariam; Grou, Caroline; Calderon, Virginie; Deming, Clayton; Leiding, Jennifer W; Arnold, Danielle E; Logan, Brent R; Griffith, Linda M; Petrovic, Aleksandra; Mousallem, Talal I; Kapoor, Neena; Heimall, Jennifer R; Barnum, Jessie L; Kapadia, Malika; Wright, Nicola; Rayes, Ahmad; Chandra, Sharat; Broglie, Larisa A; Chellapandian, Deepak; Deal, Christin L; Grunebaum, Eyal; Lim, Stephanie Si; Mallhi, Kanwaldeep; Marsh, Rebecca A; Murguia-Favela, Luis; Parikh, Suhag; Touzot, Fabien; Cowan, Morton J; Dvorak, Christopher C; Haddad, Elie; Kohn, Donald B; Notarangelo, Luigi D; Pai, Sung-Yun; Puck, Jennifer M; Pulsipher, Michael A; Torgerson, Troy R; Kang, Elizabeth M; Malech, Harry L; Segre, Julia A; Bryant, Clare E; Holland, Steven M; Falcone, Emilia Liana
BACKGROUND:Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE:We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS:We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS:We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION/CONCLUSIONS:Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.
PMID: 37659505
ISSN: 1097-6825
CID: 5613462

Biomarkers and cardiovascular events in patients with stable coronary disease in the ISCHEMIA Trials

Newman, Jonathan D; Anthopolos, Rebecca; Ruggles, Kelly V; Cornwell, Macintosh; Reynolds, Harmony R; Bangalore, Sripal; Mavromatis, Kreton; Held, Claes; Wallentin, Lars; Kullo, Iftikar J; McManus, Bruce; Newby, L Kristin K; Rosenberg, Yves; Hochman, Judith S; Maron, David J; Berger, Jeffrey S; ,
IMPORTANCE:Biomarkers may improve prediction of cardiovascular events for patients with stable coronary artery disease (CAD), but their importance in addition to clinical tests of inducible ischemia and CAD severity is unknown. OBJECTIVES:To evaluate the prognostic value of multiple biomarkers in stable outpatients with obstructive CAD and moderate or severe inducible ischemia. DESIGN AND SETTING:The ISCHEMIA and ISCHEMIA CKD trials randomized 5,956 participants with CAD to invasive or conservative management from July 2012 to January 2018; 1,064 participated in the biorepository. MAIN OUTCOME MEASURES:Primary outcome was cardiovascular death, myocardial infarction (MI), or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. Secondary outcome was cardiovascular death or MI. Improvements in prediction were assessed by cause-specific hazard ratios (HR) and area under the receiver operating characteristics curve (AUC) for an interquartile increase in each biomarker, controlling for other biomarkers, in a base clinical model of risk factors, left ventricular ejection fraction (LVEF) and ischemia severity. Secondary analyses were performed among patients in whom core-lab confirmed severity of CAD was ascertained by computed cardiac tomographic angiography (CCTA). EXPOSURES:Baseline levels of interleukin-6 (IL-6), high sensitivity troponin T (hsTnT), growth differentiation factor 15 (GDF-15), N-terminal pro-B-type natriuretic peptide (NT-proBNP), lipoprotein a (Lp[a]), high sensitivity C-reactive protein (hsCRP), Cystatin C, soluble CD 40 ligand (sCD40L), myeloperoxidase (MPO), and matrix metalloproteinase 3 (MMP3). RESULTS:Among 757 biorepository participants, median (IQR) follow-up was 3 (2-5) years, age was 67 (61-72) years, and 144 (19%) were female; 508 had severity of CAD by CCTA available. In an adjusted multimarker model with hsTnT, GDF-15, NT-proBNP and sCD40L, the adjusted HR for the primary outcome per interquartile increase in each biomarker was 1.58 (95% CI 1.22, 2.205), 1.60 (95% CI 1.16, 2.20), 1.61 (95% 1.22, 2.14), and 1.46 (95% 1.12, 1.90), respectively. The adjusted multimarker model also improved prediction compared with the clinical model, increasing the AUC from 0.710 to 0.792 (P < .01) and 0.714 to 0.783 (P < .01) for the primary and secondary outcomes, respectively. Similar findings were observed after adjusting for core-lab confirmed atherosclerosis severity. CONCLUSIONS AND RELEVANCE:Among ISCHEMIA biorepository participants, biomarkers of myocyte injury/distension, inflammation, and platelet activity improved cardiovascular event prediction in addition to risk factors, LVEF, and assessments of ischemia and atherosclerosis severity. These biomarkers may improve risk stratification for patients with stable CAD.
PMID: 37604357
ISSN: 1097-6744
CID: 5598422

Unlatching of the stem domains in the Staphylococcus aureus pore-forming leukocidin LukAB influences toxin oligomerization

Ilmain, Juliana K; Perelman, Sofya S; Panepinto, Maria C; Irnov, Irnov; Coudray, Nicolas; Samhadaneh, Nora; Pironti, Alejandro; Ueberheide, Beatrix; Ekiert, Damian C; Bhabha, Gira; Torres, Victor J
Staphylococcus aureus (S. aureus) is a serious global pathogen that causes a diverse range of invasive diseases. S. aureus utilizes a family of pore-forming toxins, known as bi-component leukocidins, to evade the host immune response and promote infection. Among these is LukAB (leukocidin A/leukocidin B), a toxin that assembles into an octameric β-barrel pore in the target cell membrane, resulting in host cell death. The established cellular receptor for LukAB is CD11b of the Mac-1 complex. Here, we show that hydrogen voltage-gated channel 1 is also required for the cytotoxicity of all major LukAB variants. We demonstrate that while each receptor is sufficient to recruit LukAB to the plasma membrane, both receptors are required for maximal lytic activity. Why LukAB requires two receptors, and how each of these receptors contributes to pore-formation remains unknown. To begin to resolve this, we performed an alanine scanning mutagenesis screen to identify mutations that allow LukAB to maintain cytotoxicity without CD11b. We discovered 30 mutations primarily localized in the stem domains of LukA and LukB that enable LukAB to exhibit full cytotoxicity in the absence of CD11b. Using crosslinking, electron microscopy, and hydroxyl radical protein footprinting, we show these mutations increase the solvent accessibility of the stem domain, priming LukAB for oligomerization. Together, our data support a model in which CD11b binding unlatches the membrane penetrating stem domains of LukAB, and this change in flexibility promotes toxin oligomerization.
PMCID:10665946
PMID: 37802313
ISSN: 1083-351x
CID: 5614202