Try a new search

Format these results:

Searched for:

person:bais01

Total Results:

22


Foxp3 expression patterns in microscopic colitides: a clinicopathologic study of 69 patients

Bai, Shuting; Siegal, Gene P; Jhala, Nirag C
Microscopic colitides, including lymphocytic (LC) and collagenous colitis (CC), are well-described pathologic conditions. An altered immune response is implicated in the pathogenesis of both entities. CD8+ T lymphocytes (CTLs) secrete interleukin 2 which stimulates proliferation of regulatory T cells (Tregs), and Tregs, in turn, inhibit CTLs, inducing cytotoxic tissue damage. In Tregs, Foxp3 regulates T-cell-related immune responses. The distribution of Tregs and CTLs in microscopic colitides has remained underexplored. To characterize differences in the distribution pattern of Foxp3 in biopsy specimens from patients with LC and CC, 71 colonic biopsy specimens from 69 consecutive patients were categorized into 1 of 3 diagnoses: no significant histopathologic abnormality (NSHPA), LC, or CC. Further immunohistochemical evaluation of all biopsy specimens was conducted using a panel of markers including CD8 and Foxp3. Our study demonstrated that CTL distribution pattern differences exist among these 2 colitides and that differences in the immunologic recruitment of Foxp3+ Tregs in the colonic mucosa correlate with differences in the spectrum of morphologic changes seen in patients with either LC or CC.
PMID: 22586052
ISSN: 0002-9173
CID: 174617

Characterization of CXCR4 expression in chondrosarcoma of bone

Bai, Shuting; Wang, Dezhi; Klein, Michael J; Siegal, Gene P
CONTEXT: Alterations in molecular elements derived from the CXC chemokine receptor 4 (CXCR4)/stromal-derived factor 1 (SDF-1) cytokine system have been found to strongly correlate with neoplastic progression leading to metastasis in a number of tumors, including osteosarcoma. Excluding hematologic malignancies, chondrosarcoma of bone is the most common primary malignant tumor of bone in adults in the United States. Like osteosarcoma, chondrosarcoma preferentially metastasizes to lung, bone, and very rarely to regional lymph nodes. However, the role of the signal pathway(s) driving neoplastic progression in chondrosarcoma has not yet been clearly elucidated. OBJECTIVE: To test whether CXCR4 was detectable in chondrosarcoma and whether CXCR4 expression levels correlated with chondrosarcoma grade. DESIGN: Twenty-two chondrosarcoma samples banked at our institution between 2001 and 2006 were retrieved for study. By using invasive ductal carcinoma of the breast and osteosarcoma as the positive controls, immunohistochemistry was performed on paraffin-embedded tissue sections and the intensity of the tumor cells was analyzed by morphometric techniques. RESULTS: All chondrosarcoma cases (22 of 22) were immunoreactive for CXCR4. However, the staining intensity of the CXCR4 between the low- and high-grade groups was significantly different. There was a higher staining intensity in high-grade chondrosarcoma cells (P < .001). CONCLUSION: CXCR4 is expressed in chondrosarcomas. CXCR4 expression levels were higher in high-grade chondrosarcoma cells than in low-grade specimens. A larger number of cases will be required to confirm these results and expand the observation, but preliminary data would argue for CXCR4 immunohistochemistry as a potential marker for biologic aggressiveness in chondrosarcoma of bone
PMID: 21631268
ISSN: 1543-2165
CID: 142954

Tumor necrosis factor receptor-associated factor 6 is an intranuclear transcriptional coactivator in osteoclasts

Bai, Shuting; Zha, Jikun; Zhao, Haibo; Ross, F Patrick; Teitelbaum, Steven L
Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-kappaB (RANK) and is an essential component of the signaling complex mediating osteoclastogenesis. However, the osteoclastic activity of TRAF6 is blunted by its association with four and half LIM domain 2 (FHL2), which functions as an adaptor protein in the cytoplasm and transcriptional regulator in the nucleus. We find that TRAF6 also localizes in the nuclei of osteoclasts but not their bone marrow macrophage precursors and that osteoclast intranuclear abundance is specifically increased by RANK ligand (RANKL). TRAF6 nuclear localization requires FHL2 and is diminished in fhl2(-/-) osteoclasts. Suggesting transcriptional activity, TRAF6 interacts with the transcription factor RUNX1 in the osteoclast nucleus. FHL2 also associates with RUNX1 but does so only in the presence of TRAF6. Importantly, TRAF6 recognizes FHL2 and RUNX1 in osteoclast nuclei, and the three molecules form a DNA-binding complex that recognizes and transactivates the RUNX1 response element in the fhl2 promoter. Finally, TRAF6 and its proximal activator, RANKL, polyubiquitinate FHL2, prompting its proteasomal degradation. These observations suggest a feedback mechanism whereby TRAF6 negatively regulates osteoclast formation by intracytoplasmic sequestration of FHL2 to blunt RANK activation and as a component of a transcription complex promoting FHL2 expression.
PMCID:2662164
PMID: 18768464
ISSN: 0021-9258
CID: 174619

The LIM protein LIMD1 influences osteoblast differentiation and function

Luderer, Hilary F; Bai, Shuting; Longmore, Gregory D
The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1(-/-) calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1(-/-) mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear beta-catenin staining in differentiating Limd1(-/-) calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.
PMCID:2570157
PMID: 18657804
ISSN: 0014-4827
CID: 174620

NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells

Bai, Shuting; Kopan, Raphael; Zou, Wei; Hilton, Matthew J; Ong, Chin-tong; Long, Fanxin; Ross, F Patrick; Teitelbaum, Steven L
NOTCH signaling is a key regulator of cell fate decisions in prenatal skeletal development and is active during adult tissue renewal. In addition, its association with neoplasia suggests that it is a candidate therapeutic target. We find that attenuated NOTCH signaling enhances osteoclastogenesis and bone resorption in vitro and in vivo by a combination of molecular mechanisms. First, deletion of Notch1-3 in bone marrow macrophages directly promotes their commitment to the osteoclast phenotype. These osteoclast precursors proliferate more rapidly than the wild type in response to macrophage colony-stimulating factor and are sensitized to RANKL and macrophage colony-stimulating factor, undergoing enhanced differentiation in response to low doses of either cytokine. Conforming with a role for NOTCH in this process, presentation of the NOTCH ligand JAGGED1 blunts the capacity of wild-type bone marrow macrophages to become osteoclasts. Combined, these data establish that NOTCH suppresses osteoclastogenesis via ligand-mediated receptor activation. Although NOTCH1 and NOTCH3 collaborate in regulating osteoclast formation, NOTCH1 is the dominant paralog. In addition, NOTCH1 deficiency promotes osteoclastogenesis indirectly by enhancing the ability of osteoblast lineage cells to stimulate osteoclastogenesis. This is achieved by decreasing the osteoprotegerin/RANKL expression ratio. Thus, NOTCH1 acts as a net inhibitor of bone resorption, exerting its effect both directly in osteoclast precursors and indirectly via osteoblast lineage cells. These observations raise caution that therapeutic inhibition of NOTCH signaling may adversely accelerate bone loss in humans.
PMID: 18156632
ISSN: 0021-9258
CID: 174622

Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation

Hilton, Matthew J; Tu, Xiaolin; Wu, Ximei; Bai, Shuting; Zhao, Haibo; Kobayashi, Tatsuya; Kronenberg, Henry M; Teitelbaum, Steven L; Ross, F Patrick; Kopan, Raphael; Long, Fanxin
Postnatal bone marrow houses mesenchymal progenitor cells that are osteoblast precursors. These cells have established therapeutic potential, but they are difficult to maintain and expand in vitro, presumably because little is known about the mechanisms controlling their fate decisions. To investigate the potential role of Notch signaling in osteoblastogenesis, we used conditional alleles to genetically remove components of the Notch signaling system during skeletal development. We found that disruption of Notch signaling in the limb skeletogenic mesenchyme markedly increased trabecular bone mass in adolescent mice. Notably, mesenchymal progenitors were undetectable in the bone marrow of mice with high bone mass. As a result, these mice developed severe osteopenia as they aged. Moreover, Notch signaling seemed to inhibit osteoblast differentiation through Hes or Hey proteins, which diminished Runx2 transcriptional activity via physical interaction. These results support a model wherein Notch signaling in bone marrow normally acts to maintain a pool of mesenchymal progenitors by suppressing osteoblast differentiation. Thus, mesenchymal progenitors may be expanded in vitro by activating the Notch pathway, whereas bone formation in vivo may be enhanced by transiently suppressing this pathway.
PMCID:2740725
PMID: 18297083
ISSN: 1078-8956
CID: 174621

Four and half lim protein 2 (FHL2) stimulates osteoblast differentiation

Lai, Chung-Fang; Bai, Shuting; Uthgenannt, Brian A; Halstead, Linda R; McLoughlin, Patricia; Schafer, Beat W; Chu, Po-Hsien; Chen, Ju; Otey, Carol A; Cao, Xu; Cheng, Su-Li
FHL2, a molecule that interacts with many integrins and transcription factors, was found to play an important role in osteoblast differentiation. Overexpression of FHL2 increases the accumulation of osteoblast differentiation markers and matrix mineralization, whereas FHL2 deficiency results in inhibition of osteoblast differentiation and decreased bone formation. INTRODUCTION: Integrin-matrix interaction plays a critical role in osteoblast function. It has been shown that the cytoplasmic domains of integrin beta subunits mediate signal transduction induced by integrin-matrix interaction. We reasoned that the identification of proteins interacting with beta-cytoplasmic tails followed by analysis of the function of these proteins would enhance our understanding on integrin signaling and the roles of these proteins in osteoblast activities. MATERIALS AND METHODS: Yeast two hybrid assay was used to identify proteins interacting with the cytoplasmic domain of integrin beta5 subunit. The association of these proteins with integrin alphavbeta5 was confirmed by confocal analysis and co-immunoprecipitation. A stable MC3T3-E1 cells line overexpressing Four and Half Lim Protein 2 (FHL2) and mouse osteoblasts deficient in FHL2 were used to study the roles of FHL2 in osteoblast differentiation and bone formation. Matrix protein expression was determined by mRNA analysis and Western blotting. Matrix mineralization was detected by Alizarin red staining. Alkaline phosphatase activity was also measured. muCT was used to determine bone histomorphometry. RESULTS AND CONCLUSIONS: FHL2 and actin-binding proteins, palladin and filamin A, were identified as proteins interacting with beta5 cytoplasmic domain. FHL2 co-localized with alphavbeta5 at the focal adhesion sites in association with palladin and filamin A. FHL2 was also present in nuclei. Osteoblasts overexpressing FHL2 exhibited increased adhesion to and migration on matrix proteins. Conversely, FHL2 stimulation of CREB activity was dependent on integrin function because it was inhibited by Gly-Arg-Gly-Asp-Ser (GRGDS) peptide. The expression of osteoblast differentiation markers and Msx2 was upregulated, and bone matrix mineralization was increased in FHL2 overexpressing cells. In contrast, FHL2-deficient bone marrow cells and osteoblasts displayed decreased osteoblast colony formation and differentiation, respectively, compared with wildtype cells. Moreover, FHL2-deficient female mice exhibited greater bone loss than the wildtype littermates after ovariectomy. Thus, FHL2 plays an important role in osteoblast differentiation and bone formation.
PMID: 16355270
ISSN: 0884-0431
CID: 174623

FHL2 inhibits the activated osteoclast in a TRAF6-dependent manner

Bai, Shuting; Kitaura, Hideki; Zhao, Haibo; Chen, Ju; Muller, Judith M; Schule, Roland; Darnay, Bryant; Novack, Deborah V; Ross, F Patrick; Teitelbaum, Steven L
TNF receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-kappaB (RANK). This event is central to normal osteoclastogenesis. We discovered that TRAF6 also interacts with FHL2 (four and a half LIM domain 2), a LIM domain--only protein that functions as a transcriptional coactivator or corepressor in a cell-type--specific manner. FHL2 mRNA and protein are undetectable in marrow macrophages and increase pari passu with osteoclast differentiation in vitro. FHL2 inhibits TRAF6-induced NF-kappaB activity in wild-type osteoclast precursors and, in keeping with its role as a suppressor of TRAF6-mediated RANK signaling, TRAF6/RANK association is enhanced in FHL2-/- osteoclasts. FHL2 overexpression delays RANK ligand-induced (RANKL-induced) osteoclast formation and cytoskeletal organization. Interestingly, osteoclast-residing FHL2 is not detectable in naive wild-type mice, in vivo, but is abundant in those treated with RANKL and following induction of inflammatory arthritis. Reflecting increased RANKL sensitivity, osteoclasts generated from FHL2-/- mice reach maturation and optimally organize their cytoskeleton earlier than their wild-type counterparts. As a consequence, FHL2-/- osteoclasts are hyperresorptive, and mice lacking the protein undergo enhanced RANKL and inflammatory arthritis-stimulated bone loss. FHL2 is, therefore, an antiosteoclastogenic molecule exerting its effect by attenuating TRAF6-mediated RANK signaling.
PMCID:1224296
PMID: 16184196
ISSN: 0021-9738
CID: 174624

A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells

Shi, Xingming; Shi, Weibin; Li, Qingnan; Song, Buer; Wan, Mei; Bai, Shuting; Cao, Xu
Mesenchymal stem cells have the potential to differentiate into various cell lineages, including adipocytes and osteoblasts. The induction of adipocyte differentiation by glucocorticoids (GCs) not only causes the accumulation of fat cells in bone marrow, but also depletes the supply of osteoblasts for new bone formation, thus leading to osteoporosis. We have shown that a GC-induced leucine-zipper protein (GILZ) antagonizes adipocyte differentiation. GILZ binds to a tandem repeat of CCAAT/enhancer-binding protein (C/EBP) binding sites in the promoter of the gene encoding peroxisome-proliferator-activated receptor-gamma2 (PPAR-gamma2), and inhibits its transcription as a sequence-specific transcriptional repressor. We have also shown that ectopic expression of GILZ blocks GC-induced adipocyte differentiation. Furthermore, adipogenic marker genes (for example, those encoding PPAR-gamma2, C/EBP-alpha, lipoprotein lipase and adipsin) are also inhibited by GILZ. Our results reveal a novel GC antagonistic mechanism that has potential therapeutic applications for the inhibition of GC-induced adipocyte differentiation.
PMCID:1319161
PMID: 12671681
ISSN: 1469-221x
CID: 174625

Regulation of enhanced vacuolar H+-ATPase expression in macrophages

Wang, Shui-Ping; Krits, Irina; Bai, Shuting; Lee, Beth S
The proton-translocating vacuolar ATPase (V-ATPase) acidifies the endocytic network of eukaryotic cells. Although all eukaryotic cell types require low to moderate levels of V-ATPase, some proton-secreting cells express amplified levels for use in specialized membrane domains. To characterize genetic elements required for this heightened expression, we studied transcription and stability of mRNA encoding the V-ATPase c subunit in a low expressing fibroblast cell line (NIH 3T3) and a high expressing macrophage cell line (RAW 264.7). Isolation of the promoter and mapping of the transcriptional start site indicated that the c subunit promoter is TATA-less and initiates transcription at a single site. Promoter activity was regulated through the same transcription factor binding sites in both cell types, which showed no discernible difference in rates of c subunit transcription. In contrast, c subunit transcripts showed markedly greater stability in RAW cells than in 3T3 cells, as did other constitutively expressed V-ATPase subunit transcripts. Only the B and 'a' subunits, which are expressed in multiple isoforms, were not regulated solely by mRNA stability. These results suggest that overall expression levels of the V-ATPase are set primarily by regulation of mRNA stability and that transcriptional mechanisms determine subunit composition in varying cell types.
PMID: 11786555
ISSN: 0021-9258
CID: 174627