Try a new search

Format these results:

Searched for:

person:blesse01

in-biosketch:yes

Total Results:

33


Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias

Buzas, Peter; Blessing, Esther M; Szmajda, Brett A; Martin, Paul R
Many of the parvocellular pathway (PC) cells in primates show red-green spectral selectivity (cone opponency), but PC ganglion cells in the retina show no anatomical signs of cone selectivity. Here we asked whether responses of PC cells are compatible with "random wiring" of cone inputs. We measured long-wavelength-sensitive (L) and medium-wavelength-sensitive (M) cone inputs to PC receptive fields in the dorsal lateral geniculate of marmosets, using discrete stimuli (apertures and annuli) to achieve functional segregation of center and surround. Receptive fields between the fovea and 30 degrees eccentricity were measured. We show that, in opponent PC cells, the center is dominated by one (L or M) cone type, with normally <20% contribution from the other cone type (high "cone purity"), whereas non-opponent cells have mixed L and M cone inputs to the receptive field center. Furthermore, opponent response strength depends on the overall segregation of L and M cone inputs to center and surround rather than exclusive input from one cone type to either region. These data are consistent with random wiring. The majority of PC cells in both foveal (<8 degrees) and peripheral retina nevertheless show opponent responses. This arises because cone purity in the receptive field surround is at least as high as in the center, and the surround in nearly all opponent PC cells is dominated by the opposite cone type to that which dominates the center. These functional biases increase the proportion of opponent PC cells, but their anatomical basis is unclear.
PMID: 17065455
ISSN: 0270-6474
CID: 1356412

Contribution of chromatic aberrations to color signals in the primate visual system

Forte, Jason D; Blessing, Esther M; Buzas, Peter; Martin, Paul R
We measured responses to red-green color variation in parvocellular (PC) neurons in the lateral geniculate nucleus of dichromatic ("red-green color blind") marmoset monkeys. Although these animals lack distinct visual pigments to distinguish between wavelengths in this range, many of the colored stimuli nevertheless produced robust responses in PC cells. We show that these responses, which are restricted to high stimulus spatial frequencies (fine image details), arise from chromatic aberrations in the eye. The neural signals produced by chromatic aberrations are of comparable magnitude to signals produced by high-frequency luminance (LUM) modulation and thus could influence cortical pathways for processing of color and object recognition. The fact that genetically "color-blind" primates are not necessarily blind to wavelength-dependent contours in the visual world may have enabled red-green color vision to become linked with high-acuity spatial vision during primate evolution.
PMID: 16522137
ISSN: 1534-7362
CID: 1356422

Chromatic and spatial properties of parvocellular cells in the lateral geniculate nucleus of the marmoset (Callithrix jacchus)

Blessing, Esther M; Solomon, Samuel G; Hashemi-Nezhad, Maziar; Morris, Brian J; Martin, Paul R
The parvocellular (PC) division of the afferent visual pathway is considered to carry neuronal signals which underlie the red-green dimension of colour vision as well as high-resolution spatial vision. In order to understand the origin of these signals, and the way in which they are combined, the responses of PC cells in dichromatic ('red-green colour-blind') and trichromatic marmosets were compared. Visual stimuli included coloured and achromatic gratings, and spatially uniform red and green lights presented at varying temporal phases and frequencies.The sensitivity of PC cells to red-green chromatic modulation was found to depend primarily on the spectral separation between the medium- and long-wavelength-sensitive cone pigments (20 or 7 nm) in the two trichromatic marmoset phenotypes studied. The temporal frequency dependence of chromatic sensitivity was consistent with centre-surround interactions. Some evidence for chromatic selectivity was seen in peripheral PC cells. The receptive field dimensions of parvocellular cells were similar in dichromatic and trichromatic animals, but the achromatic contrast sensitivity of cells was slightly higher (by about 30%) in dichromats than in trichromats. These data support the hypothesis that the primary role of the PC is to transmit high-acuity spatial signals, with red-green opponent signals appearing as an additional response dimension in trichromatic animals.
PMCID:1665047
PMID: 15047769
ISSN: 0022-3751
CID: 1356432