Try a new search

Format these results:

Searched for:

person:boadaf01

in-biosketch:yes

Total Results:

114


Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder

Etkin, Amit; Maron-Katz, Adi; Wu, Wei; Fonzo, Gregory A; Huemer, Julia; Vértes, Petra E; Patenaude, Brian; Richiardi, Jonas; Goodkind, Madeleine S; Keller, Corey J; Ramos-Cejudo, Jaime; Zaiko, Yevgeniya V; Peng, Kathy K; Shpigel, Emmanuel; Longwell, Parker; Toll, Russ T; Thompson, Allison; Zack, Sanno; Gonzalez, Bryan; Edelstein, Raleigh; Chen, Jingyun; Akingbade, Irene; Weiss, Elizabeth; Hart, Roland; Mann, Silas; Durkin, Kathleen; Baete, Steven H; Boada, Fernando E; Genfi, Afia; Autea, Jillian; Newman, Jennifer; Oathes, Desmond J; Lindley, Steven E; Abu-Amara, Duna; Arnow, Bruce A; Crossley, Nicolas; Hallmayer, Joachim; Fossati, Silvia; Rothbaum, Barbara O; Marmar, Charles R; Bullmore, Edward T; O'Hara, Ruth
A mechanistic understanding of the pathology of psychiatric disorders has been hampered by extensive heterogeneity in biology, symptoms, and behavior within diagnostic categories that are defined subjectively. We investigated whether leveraging individual differences in information-processing impairments in patients with post-traumatic stress disorder (PTSD) could reveal phenotypes within the disorder. We found that a subgroup of patients with PTSD from two independent cohorts displayed both aberrant functional connectivity within the ventral attention network (VAN) as revealed by functional magnetic resonance imaging (fMRI) neuroimaging and impaired verbal memory on a word list learning task. This combined phenotype was not associated with differences in symptoms or comorbidities, but nonetheless could be used to predict a poor response to psychotherapy, the best-validated treatment for PTSD. Using concurrent focal noninvasive transcranial magnetic stimulation and electroencephalography, we then identified alterations in neural signal flow in the VAN that were evoked by direct stimulation of that network. These alterations were associated with individual differences in functional fMRI connectivity within the VAN. Our findings define specific neurobiological mechanisms in a subgroup of patients with PTSD that could contribute to the poor response to psychotherapy.
PMID: 30944165
ISSN: 1946-6242
CID: 3799822

MRI Evidence of Altered Callosal Sodium in Mild Traumatic Brain Injury

Grover, H; Qian, Y; Boada, F E; Lakshmanan, K; Flanagan, S; Lui, Y W
BACKGROUND AND PURPOSE/OBJECTIVE:Na) MR imaging. MATERIALS AND METHODS/METHODS:Na) MR imaging using a 3T scanner. Total sodium concentration was measured in the genu, body, and splenium of the corpus callosum with 5-mm ROIs; total sodium concentration of the genu-to-splenium ratio was calculated and compared between patients and controls. RESULTS:= .001). CONCLUSIONS:Complex differences are seen in callosal total sodium concentration in symptomatic patients with mild traumatic brain injury, supporting the notion of ionic dysfunction in the pathogenesis of mild traumatic brain injury. The total sodium concentration appears to be altered beyond the immediate postinjury phase, and further work is needed to understand the relationship to persistent symptoms and outcome.
PMID: 30498019
ISSN: 1936-959x
CID: 3556182

Approximating MRI-Based Anatomically Guided PET Reconstruction with a Convolutional Neural Network

Chapter by: Rigie, David; Schramm, Georg; Vahle, Thomas; Shepherd, Timothy; Nuyts, Johan; Boada, Fernando
in: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings by
[S.l.] : Institute of Electrical and Electronics Engineers Inc., 2018
pp. ?-?
ISBN: 9781538684948
CID: 4164182

An approach for a reconstruction-derived whole-blood arterial input function (RDIF) in PET/MRI

Chapter by: Schramm, Georg; Rezaei, Ahmadreza; Koole, Michel; Boada, Fernando; Van Laere, Koen; Nuyts, Johan
in: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings by
[S.l.] : Institute of Electrical and Electronics Engineers Inc., 2018
pp. ?-?
ISBN: 9781538684948
CID: 4164192

Joint reconstruction of activity and attenuation in Time-of-Flight PET: A Quantitative Analysis

Rezaei, Ahmadreza; Deroose, Christophe M; Vahle, Thomas; Boada, Fernando; Nuyts, Johan
Joint activity and attenuation reconstruction methods from time of flight (TOF) positron emission tomography (PET) data provide an effective solution to attenuation correction when no (or incomplete/inaccurate) information on the attenuation is available. One of the main barriers limiting their use in clinical practice is the lack of validation of these methods on a relatively large patient database. In this contribution, we aim at validating the activity reconstructions of the maximum likelihood activity reconstruction and attenuation registration (MLRR) algorithm on a whole-body patient data set. Furthermore, a partial validation (since the scale problem of the algorithm is avoided for now) of the maximum likelihood activity and attenuation reconstruction (MLAA) algorithm is also provided. We present a quantitative comparison of the joint reconstructions to the current clinical gold-standard maximum likelihood expectation maximization (MLEM) reconstruction with CT-based attenuation correction.Methods:The whole-body TOF-PET emission data of each patient data set is processed as a whole to reconstruct an activity volume covering all the acquired bed positions, which helps to reduce the problem of a scale per bed position in MLAA to a global scale for the entire activity volume. Three reconstruction algorithms are used: MLEM, MLRR and MLAA. A maximum likelihood (ML) scaling of the single scatter simulation (SSS) estimate to the emission data is used for scatter correction. The reconstruction results are then analyzed in different regions of interest.Results:The joint reconstructions of the whole-body patient data set provide better quantification in case of PET and CT misalignments caused by patient and organ motion. Our quantitative analysis shows a difference of -4.2% (±2.3%) and -7.5% (±4.6%) between the joint reconstructions of MLRR and MLAA compared to MLEM, averaged over all regions of interest, respectively.Conclusion:Joint activity and attenuation estimation methods provide a useful means to estimate the tracer distribution in cases where CT-based attenuation images are subject to misalignments or are not available. With an accurate estimate of the scatter contribution in the emission measurements, the joint TOF-PET reconstructions are within clinical acceptable accuracy.
PMID: 29496982
ISSN: 1535-5667
CID: 2965992

Low Rank plus Sparse decomposition of ODFs for improved detection of group-level differences and variable correlations in white matter

Baete, Steven H; Chen, Jingyun; Lin, Ying-Chia; Wang, Xiuyuan; Otazo, Ricardo; Boada, Fernando E
A novel approach is presented for group statistical analysis of diffusion weighted MRI datasets through voxelwise Orientation Distribution Functions (ODF). Recent advances in MRI acquisition make it possible to use high quality diffusion weighted protocols (multi-shell, large number of gradient directions) for routine in vivo study of white matter architecture. The dimensionality of these data sets is however often reduced to simplify statistical analysis. While these approaches may detect large group differences, they do not fully capitalize on all acquired image volumes. Incorporation of all available diffusion information in the analysis however risks biasing the outcome by outliers. Here we propose a statistical analysis method operating on the ODF, either the diffusion ODF or fiber ODF. To avoid outlier bias and reliably detect voxelwise group differences and correlations with demographic or behavioral variables, we apply the Low-Rank plus Sparse (L+S) matrix decomposition on the voxelwise ODFs which separates the sparse individual variability in the sparse matrix S whilst recovering the essential ODF features in the low-rank matrix L. We demonstrate the performance of this ODF L+S approach by replicating the established negative association between global white matter integrity and physical obesity in the Human Connectome dataset. The volume of positive findings (p<0.01, 227 cm3) agrees with and expands on the volume found by TBSS (17 cm3), Connectivity based fixel enhancement (15 cm3) and Connectometry (212 cm3). In the same dataset we further localize the correlations of brain structure with neurocognitive measures such as fluid intelligence and episodic memory. The presented ODF L+S approach will aid in the full utilization of all acquired diffusion weightings leading to the detection of smaller group differences in clinically relevant settings as well as in neuroscience applications.
PMCID:5949269
PMID: 29526742
ISSN: 1095-9572
CID: 2992472

An eight-channel sodium/proton coil for brain MRI at 3 T

Lakshmanan, Karthik; Brown, Ryan; Madelin, Guillaume; Qian, Yongxian; Boada, Fernando; Wiggins, Graham C
The purpose of this work is to illustrate a new coil decoupling strategy and its application to a transmit/receive sodium/proton phased array for magnetic resonance imaging (MRI) of the human brain. We implemented an array of eight triangular coils that encircled the head. The ensemble of coils was arranged to form a modified degenerate mode birdcage whose eight shared rungs were offset from the z-axis at interleaved angles of ±30°. This key geometric modification resulted in triangular elements whose vertices were shared between next-nearest neighbors, which provided a convenient location for counter-wound decoupling inductors, whilst nearest-neighbor decoupling was addressed with shared capacitors along the rungs. This decoupling strategy alleviated the strong interaction that is characteristic of array coils at low frequency (32.6 MHz in this case) and allowed the coil to operate efficiently in transceive mode. The sodium array provided a 1.6-fold signal-to-noise ratio advantage over a dual-nuclei birdcage coil in the center of the head and up to 2.3-fold gain in the periphery. The array enabled sodium MRI of the brain with 5-mm isotropic resolution in approximately 13 min, thus helping to overcome low sodium MR sensitivity and improving quantification in neurological studies. An eight-channel proton array was integrated into the sodium array to enable anatomical imaging.
PMCID:5779625
PMID: 29280204
ISSN: 1099-1492
CID: 2895902

Evaluation of Parallel Level Sets and Bowsher's Method as Segmentation-Free Anatomical Priors for Time-of-Flight PET Reconstruction

Schramm, Georg; Holler, Martin; Rezaei, Ahmadreza; Vunckx, Kathleen; Knoll, Florian; Bredies, Kristian; Boada, Fernando; Nuyts, Johan
In this article, we evaluate Parallel Level Sets (PLS) and Bowsher's method as segmentation-free anatomical priors for regularized brain positron emission tomography (PET) reconstruction. We derive the proximity operators for two PLS priors and use the EM-TV algorithm in combination with the first order primal-dual algorithm by Chambolle and Pock to solve the non-smooth optimization problem for PET reconstruction with PLS regularization. In addition, we compare the performance of two PLS versions against the symmetric and asymmetric Bowsher priors with quadratic and relative difference penalty function. For this aim, we first evaluate reconstructions of 30 noise realizations of simulated PET data derived from a real hybrid positron emission tomography/magnetic resonance imaging (PET/MR) acquisition in terms of regional bias and noise. Second, we evaluate reconstructions of a real brain PET/MR data set acquired on a GE Signa time-of-flight PET/MR in a similar way. The reconstructions of simulated and real 3D PET/MR data show that all priors were superior to post-smoothed maximum likelihood expectation maximization with ordered subsets (OSEM) in terms of bias-noise characteristics in different regions of interest where the PET uptake follows anatomical boundaries. Our implementation of the asymmetric Bowsher prior showed slightly superior performance compared with the two versions of PLS and the symmetric Bowsher prior. At very high regularization weights, all investigated anatomical priors suffer from the transfer of non-shared gradients.
PMCID:5821901
PMID: 29408787
ISSN: 1558-254x
CID: 2979222

Accelerated radial diffusion spectrum imaging using a multi-echo stimulated echo diffusion sequence

Baete, Steven H; Boada, Fernando E
PURPOSE: Diffusion spectrum imaging (DSI) provides us non-invasively and robustly with anatomical details of brain microstructure. To achieve sufficient angular resolution, DSI requires a large number of q-space samples, leading to long acquisition times. This need is mitigated here by combining the beneficial properties of Radial q-space sampling for DSI with a Multi-Echo Stimulated Echo Sequence (MESTIM). METHODS: Full 2D k-spaces for each of several q-space samples, along the same radially outward line in q-space, are acquired in one readout train with one spin and three stimulated echoes. RF flip angles are carefully chosen to distribute spin magnetization over the echoes and the DSI reconstruction is adapted to account for differences in diffusion time among echoes. RESULTS: Individual datasets and bootstrapped reproducibility analysis demonstrate image quality and SNR of the more-than-twofold-accelerated RDSI MESTIM sequence. Orientation distribution functions (ODF) and tractography results benefit from the longer diffusion times of the latter echoes in the echo train. CONCLUSION: A MESTIM sequence can be used to shorten RDSI acquisition times significantly without loss of image or ODF quality. Further acceleration is possible by combination with simultaneous multi-slice techniques. Magn Reson Med, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine.
PMCID:5623607
PMID: 28370298
ISSN: 1522-2594
CID: 2521362

Improved Detection of Small Pulmonary Nodules Through Simultaneous MR/PET Imaging

Boada, Fernando E; Koesters, Thomas; Block, Kai Tobias; Chandarana, Hersh
Magnetic resonance (MR)/PET scanners provide an imaging platform that enables simultaneous acquisition of MR and PET data in perfect spatial and temporal registration. This feature allows improving image quality for the MR and PET images obtained during the course of an examination. In this work the authors demonstrate the use of prospective MR-based motion tracking information for removing motion blur in MR/PET images of small pulmonary nodules. The theoretical basis for the algorithms is presented alongside clinical examples of its use.
PMID: 29157389
ISSN: 1879-9809
CID: 2791682