Try a new search

Format these results:

Searched for:

person:chakrs07

in-biosketch:yes

Total Results:

94


RNA sequencing of corneas from two keratoconus patient groups identifies potential biomarkers and decreased NRF2-antioxidant responses

Shinde, Vishal; Hu, Nan; Mahale, Alka; Maiti, George; Daoud, Yassine; Eberhart, Charles G; Maktabi, Azza; Jun, Albert S; Al-Swailem, Samar A; Chakravarti, Shukti
Keratoconus is a highly prevalent (1 in 2000), genetically complex and multifactorial, degenerative disease of the cornea whose pathogenesis and underlying transcriptomic changes are poorly understood. To identify disease-specific changes and gene expression networks, we performed next generation RNA sequencing from individual corneas of two distinct patient populations - one from the Middle East, as keratoconus is particularly severe in this group, and the second from an African American population in the United States. We conducted a case: control RNA sequencing study of 7 African American, 12 Middle Eastern subjects, and 7 controls. A Principal Component Analysis of all expressed genes was used to ascertain differences between samples. Differentially expressed genes were identified using Cuffdiff and DESeq2 analyses, and identification of over-represented signaling pathways by Ingenuity Pathway Analysis. Although separated by geography and ancestry, key commonalities in the two patient transcriptomes speak of disease - intrinsic gene expression networks. We identified an overwhelming decrease in the expression of anti-oxidant genes regulated by NRF2 and those of the acute phase and tissue injury response pathways, in both patient groups. Concordantly, NRF2 immunofluorescence staining was decreased in patient corneas, while KEAP1, which helps to degrade NRF2, was increased. Diminished NRF2 signaling raises the possibility of NRF2 activators as future treatment strategies in keratoconus. The African American patient group showed increases in extracellular matrix transcripts that may be due to underlying profibrogenic changes in this group. Transcripts increased across all patient samples include Thrombospondin 2 (THBS2), encoding a matricellular protein, and cellular proteins, GAS1, CASR and OTOP2, and are promising biomarker candidates. Our approach of analyzing transcriptomic data from different populations and patient groups will help to develop signatures and biomarkers for keratoconus subtypes. Further, RNA sequence data on individual patients obtained from multiple studies may lead to a core keratoconus signature of deregulated genes and a better understanding of its pathogenesis.
PMCID:7303170
PMID: 32555404
ISSN: 2045-2322
CID: 4498832

Moderate Loss of the Extracellular Matrix Proteoglycan Lumican Attenuates Cardiac Fibrosis in Mice Subjected to Pressure Overload

Mohammadzadeh, Naiyereh; Melleby, Arne Olav; Palmero, Sheryl; Sjaastad, Ivar; Chakravarti, Shukti; Engebretsen, Kristin V T; Christensen, Geir; Lunde, Ida G; Tønnessen, Theis
INTRODUCTION/BACKGROUND:The heart undergoes myocardial remodeling during progression to heart failure following pressure overload. Myocardial remodeling is associated with structural and functional changes in cardiac myocytes, fibroblasts, and the extracellular matrix (ECM) and is accompanied by inflammation. Cardiac fibrosis, the accumulation of ECM molecules including collagens and collagen cross-linking, contributes both to impaired systolic and diastolic function. Insufficient mechanistic insight into what regulates cardiac fibrosis during pathological conditions has hampered therapeutic so-lutions. Lumican (LUM) is an ECM-secreted proteoglycan known to regulate collagen fibrillogenesis. Its expression in the heart is increased in clinical and experimental heart failure. Furthermore, LUM is important for survival and cardiac remodeling following pressure overload. We have recently reported that total lack of LUM increased mortality and left ventricular dilatation, and reduced collagen expression and cross-linking in LUM knockout mice after aortic banding (AB). Here, we examined the effect of LUM on myocardial remodeling and function following pressure overload in a less extreme mouse model, where cardiac LUM level was reduced to 50% (i.e., moderate loss of LUM). METHODS AND RESULTS/RESULTS:mRNA and protein levels of LUM were reduced to 50% in heterozygous LUM (LUM+/-) hearts compared to wild-type (WT) controls. LUM+/- mice were subjected to AB. There was no difference in survival between LUM+/- and WT mice post-AB. Echocardiography revealed no striking differences in cardiac geometry between LUM+/- and WT mice 2, 4, and 6 weeks post-AB, although markers of diastolic dysfunction indicated better function in LUM+/- mice. LUM+/- hearts revealed reduced cardiac fibrosis assessed by histology. In accordance, the expression of collagen I and III, the main fibrillar collagens in the heart, and other ECM molecules central to fibrosis, i.e. including periostin and fibronectin, was reduced in the hearts of LUM+/- compared to WT 6 weeks post-AB. We found no differences in collagen cross-linking between LUM+/- and WT mice post-AB, as assessed by histology and qPCR. CONCLUSIONS:Moderate lack of LUM attenuated cardiac fibrosis and improved diastolic dysfunction following pressure overload in mice, adding to the growing body of evidence suggesting that LUM is a central profibrotic molecule in the heart that could serve as a potential therapeutic target.
PMID: 31968347
ISSN: 1421-9751
CID: 4273932

A Guide to the Development of Human CorneaOrganoids from Induced Pluripotent Stem Cells in Culture

Foster, James W; Wahlin, Karl J; Chakravarti, Shukti
The cornea is the outermost transparent and refractive barrier surface of the eye necessary for vision. Development of the cornea involves the coordinated production of extracellular matrix, epithelial differentiation, and endothelial cell expansion to produce a highly transparent tissue. Here we describe the production of multilayered three-dimensional organoids from human-induced pluripotent stem cells. These organoids have the potential for multiple downstream applications which are currently unattainable using traditional in vitro techniques.
PMID: 32542600
ISSN: 1940-6029
CID: 4498792

Mapping Keratoconus Molecular Substrates by Multiplexed High-Resolution Proteomics of Unpooled Corneas

Shinde, Vishal; Hu, Nan; Renuse, Santosh; Mahale, Alka; Pandey, Akhilesh; Eberhart, Charles; Stone, Donald; Al-Swailem, Samar A; Maktabi, Azza; Chakravarti, Shukti
Keratoconus (KCN) is a leading cause for cornea grafting worldwide. Keratoconus is a multifactorial disease that causes progressive thinning of the cornea and whose etiology is poorly understood. Several studies have used proteomics on patient tear fluids to identify potential biomarkers. However, proteome of the cornea itself has not been investigated fully. We report here new findings from a case-control study using multiplexed mass spectrometry (MS) on individual (unpooled) corneas to gain deeper insights into proteins and biomarkers relevant to keratoconus. We employed a high-pressure approach to extract total protein from individual corneas from five cases and five controls, followed by trypsin digestion and tandem mass tag (TMT) labeling. The MS-derived data were searched using the Human NCBI RefSeq protein database v92, with peptides and proteins filtered at 1% false discovery rate. A total of 3132 proteins were detected, of which 627 were altered significantly (p ≤ 0.05) in keratoconus corneas. The increases were overwhelmingly in the mTOR/PI3/AKT signal-mediated regulations of cell survival and proliferation, nonsense-mediated decay of transcripts, and proteasomal pathways. The decreases were in several extracellular matrix proteins and in many members of the complement system. Importantly, this multiplexed proteomic study of keratoconus corneas identified, to our knowledge, the largest number of corneal proteins. The novel findings include changes in pathways that regulate transcript stability, proteasomal degradation, and the complement system in corneas with keratoconus. These observations offer new prospects toward future discovery of novel molecular targets for diagnostic and therapeutic innovations for patients with keratoconus.
PMID: 31651220
ISSN: 1557-8100
CID: 4163082

Small Molecule Modulation of the Integrated Stress Response Governs the Keratoconic Phenotype In Vitro

Soiberman, Uri Simcha; Shehata, Ahmed Elsayed Mahmoud; Lu, Michelle Xiaoyi; Young, Tempest; Daoud, Yassine J; Chakravarti, Shukti; Jun, Albert S; Foster, James William
Purpose/UNASSIGNED:The degenerative corneal disease keratoconus is a leading indicator for corneal transplant with an unknown etiology. We recently identified the activation of the integrated stress response (ISR) in ex vivo human corneas and in vitro cell culture. Utilizing small molecules to modulate the ISR we sought to investigate the effects of stimulating the ISR in healthy cells to recapitulate aspects of the in vitro keratoconic phenotype and whether relieving the ISR signaling would recover the disease phenotype. Methods/UNASSIGNED:Corneal fibroblasts were extracted from patients undergoing corneal transplant or unaffected cadaverous donor limbal rings. Cells were exposed to the DNA damage-inducible protein (GADD34) inhibitor SAL003 to stimulate the ISR, or Trans-ISRIB to relieve ISR signaling pathway. Collagen production was assessed through hydroxyproline production, Sirius Red incorporation, or quantitative (q)PCR. Western blotting, hydroxyproline, and qPCR were used to assess components of the ISR pathway and collagen production. Results/UNASSIGNED:ISR stimulation through SAL003 resulted in significant decrease of hydroxyproline and COL1A1 transcription and eventual apoptosis in normal fibroblasts. Patient (KC) fibroblast production of hydroxyproline was increased in response to ISRIB, while matrix metalloproteinase (MMP)9 production was lowered. The prospective biomarker of keratoconus prolactin-inducible factor was also upregulated in KC fibroblast cultures in response to ISRIB. Inflammatory markers TNFα and IL-1β were unaffected. Conclusions/UNASSIGNED:Activation of the ISR is sufficient to recapitulate many key aspects of the KC phenotype in unaffected cells in vitro. Inhibition of the ISR also relieves many of the hallmarks of KC in affected cells. Therefore, targeting of the ISR through small molecules is a potential therapeutic path for small molecule treatment of keratoconus.
PMID: 31390655
ISSN: 1552-5783
CID: 4034352

The extracellular matrix proteoglycan lumican improves survival and counteracts cardiac dilatation and failure in mice subjected to pressure overload

Mohammadzadeh, Naiyereh; Lunde, Ida G; Andenæs, Kine; Strand, Mari E; Aronsen, Jan Magnus; Skrbic, Biljana; Marstein, Henriette S; Bandlien, Caroline; Nygård, Ståle; Gorham, Joshua; Sjaastad, Ivar; Chakravarti, Shukti; Christensen, Geir; Engebretsen, Kristin V T; Tønnessen, Theis
Left ventricular (LV) dilatation is a key step in transition to heart failure (HF) in response to pressure overload. Cardiac extracellular matrix (ECM) contains fibrillar collagens and proteoglycans, important for maintaining tissue integrity. Alterations in collagen production and cross-linking are associated with cardiac LV dilatation and HF. Lumican (LUM) is a collagen binding proteoglycan with increased expression in hearts of patients and mice with HF, however, its role in cardiac function remains poorly understood. To examine the role of LUM in pressure overload induced cardiac remodeling, we subjected LUM knock-out (LUMKO) mice to aortic banding (AB) and treated cultured cardiac fibroblasts (CFB) with LUM. LUMKO mice exhibited increased mortality 1-14 days post-AB. Echocardiography revealed increased LV dilatation, altered hypertrophic remodeling and exacerbated contractile dysfunction in surviving LUMKO 1-10w post-AB. LUMKO hearts showed reduced collagen expression and cross-linking post-AB. Transcriptional profiling of LUMKO hearts by RNA sequencing revealed 714 differentially expressed transcripts, with enrichment of cardiotoxicity, ECM and inflammatory pathways. CFB treated with LUM showed increased mRNAs for markers of myofibroblast differentiation, proliferation and expression of ECM molecules important for fibrosis, including collagens and collagen cross-linking enzyme lysyl oxidase. In conclusion, we report the novel finding that lack of LUM attenuates collagen cross-linking in the pressure-overloaded heart, leading to increased mortality, dilatation and contractile dysfunction in mice.
PMID: 31235849
ISSN: 2045-2322
CID: 3963592

Syndecan-1 Regulates Psoriasiform Dermatitis by Controlling Homeostasis of IL-17-Producing γδ T Cells

Jaiswal, Anil Kumar; Sadasivam, Mohanraj; Archer, Nathan K; Miller, Robert J; Dillen, Carly A; Ravipati, Advaitaa; Park, Pyong Woo; Chakravarti, Shukti; Miller, Lloyd S; Hamad, Abdel Rahim A
IL-17 is a potent proinflammatory cytokine that drives pathogenesis of multiple autoimmune diseases, including psoriasis. A major source of pathogenic IL-17 is a subset of γδ T cells (Tγδ17) that acquires the ability to produce IL-17 while developing in the thymus. The mechanisms that regulate homeostasis of Tγδ17 cells and their roles in psoriasis, however, are not fully understood. In this paper, we show that the heparan sulfate proteoglycan syndecan-1 (sdc1) plays a critical role in regulating homeostasis of Tγδ17 cells and modulating psoriasis-like skin inflammation in mice. sdc1 was predominantly expressed by Tγδ17 cells (but not IL-17- Tγδ cells) in the thymus, lymph nodes, and dermis. sdc1 deficiency significantly and selectively increased the frequency and absolute numbers of Tγδ17 cells by mechanisms that included increased proliferation and decreased apoptosis. Adoptive transfer experiments ruled out a significant role of sdc1 expressed on nonhematopoietic cells in halting expansion and proliferation of sdc1-deficient Tγδ17 cells. When subjected to imiquimod-induced psoriasiform dermatitis, Tγδ17 cells in sdc1KO mice displayed heightened responses accompanied by significantly increased skin inflammation than their wild-type counterparts. Furthermore, transferred sdc1-deficient γδ T cells caused more severe psoriasiform dermatitis than their sdc1-sufficient counterparts in TCR-βδ KO hosts. The results uncover a novel role for sdc1 in controlling homeostasis of Tγδ17 cells and moderating host responses to psoriasis-like inflammation.
PMID: 30045969
ISSN: 1550-6606
CID: 3243722

Integrated Stress Response and Decreased ECM in Cultured Stromal Cells From Keratoconus Corneas

Foster, James W; Shinde, Vishal; Soiberman, Uri S; Sathe, Gajanan; Liu, Sheng; Wan, Julius; Qian, Jiang; Dauoud, Yassine; Pandey, Akhilesh; Jun, Albert S; Chakravarti, Shukti
Purpose/UNASSIGNED:Keratoconus (KC) is a multifactorial disease where progressive thinning and weakening of the cornea leads to loss of visual acuity. Although the underlying etiology is poorly understood, a major endpoint is a dysfunctional stromal connective tissue matrix. Using multiple individual KC corneas, we determined that matrix production by keratocytes is severely impeded due to an altered stress response program. Methods/UNASSIGNED:KC and donor (DN) stromal keratocytes were cultured in low glucose serum-free medium containing insulin, selenium and transferrin. Fibronectin, collagens and proteins related to their chaperone, processing and export, matrix metalloproteinase, and stress response related proteins were investigated by immunoblotting, immunocytochemistry, hydroxyproline quantification, and gelatin zymography. Multiplexed mass spectrometry was used for global proteomic profiling of 5 individual DN and KC cell culture. Transcription of selected proteins was assayed by qPCR. Results/UNASSIGNED:DN and KC cells showed comparable survival and growth. However, immunoblotting of selected ECM proteins and global proteomics showed decreased fibronectin, collagens, PCOLCE, ADAMTS2, BMP1, HSP47, other structural and cytoskeletal proteins in KC. Phosphorylated (p) eIF2α, a translation regulator and its target, ATF4 were increased in KC cultured cells and corneal sections. Conclusions/UNASSIGNED:The profound decrease in structural proteins in cultured KC cells and increase in the p-eIF2α, and ATF4, suggest a stress related blockade in structural proteins not immediately needed for cell survival. Therefore, this cell culture system reveals an intrinsic aggravated stress response with consequent decrease in ECM proteins as potential pathogenic underpinnings in KC.
PMCID:5995483
PMID: 30029277
ISSN: 1552-5783
CID: 3202322

Fibrillin Microfibrils Keep the Cornea in Shape

Chakravarti, Shukti
PMCID:6108237
PMID: 28395027
ISSN: 0146-0404
CID: 2801892

Cornea organoids from human induced pluripotent stem cells

Foster, James W; Wahlin, Karl; Adams, Sheila M; Birk, David E; Zack, Donald J; Chakravarti, Shukti
The cornea is the transparent outermost surface of the eye, consisting of a stratified epithelium, a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea, harboring three distinct cell types with expression of key epithelial, stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions.
PMCID:5269590 COIS- The authors declare no competing
PMID: 28128337
ISSN: 2045-2322
CID: 2801902