Try a new search

Format these results:

Searched for:

person:cloosm01

Total Results:

51


Rapid Radial T1 and T2 Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting

Cloos, Martijn A; Assländer, Jakob; Abbas, Batool; Fishbaugh, James; Babb, James S; Gerig, Guido; Lattanzi, Riccardo
BACKGROUND:Quantitative MRI can detect early changes in cartilage biochemical components, but its routine clinical implementation is challenging. PURPOSE/OBJECTIVE:along radial sections of the hip for accurate and reproducible multiparametric quantitative cartilage assessment in a clinically feasible scan time. STUDY TYPE/METHODS:Reproducibility, technical validation. SUBJECTS/PHANTOM/UNASSIGNED:A seven-compartment phantom and three healthy volunteers. FIELD STRENGTH/SEQUENCE/UNASSIGNED:at 3 T was developed. Automatic positioning and semiautomatic cartilage segmentation were implemented to improve consistency and simplify workflow. ASSESSMENT/RESULTS:Intra- and interscanner variability of our technique was assessed over multiple scans on three different MR scanners. STATISTICAL TESTS/UNASSIGNED:over six radial slices was calculated. Restricted maximum likelihood estimation of variance components was used to estimate intrasubject variances reflecting variation between results from the two scans using the same scanner (intrascanner variance) and variation among results from the three scanners (interscanner variance). RESULTS:. DATA CONCLUSION/UNASSIGNED:Our method, which includes slice positioning, model-based parameter estimation, and cartilage segmentation, is highly reproducible. It could enable employing quantitative hip cartilage evaluation for longitudinal and multicenter studies. LEVEL OF EVIDENCE/METHODS:1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.
PMID: 30584691
ISSN: 1522-2586
CID: 3560362

Fingerprinting Orientation Distribution Functions in diffusion MRI detects smaller crossing angles

Baete, Steven H; Cloos, Martijn A; Lin, Ying-Chia; Placantonakis, Dimitris G; Shepherd, Timothy; Boada, Fernando E
Diffusion tractography is routinely used to study white matter architecture and brain connectivity in vivo. A key step for successful tractography of neuronal tracts is the correct identification of tract directions in each voxel. Here we propose a fingerprinting-based methodology to identify these fiber directions in Orientation Distribution Functions, dubbed ODF-Fingerprinting (ODF-FP). In ODF-FP, fiber configurations are selected based on the similarity between measured ODFs and elements in a pre-computed library. In noisy ODFs, the library matching algorithm penalizes the more complex fiber configurations. ODF simulations and analysis of bootstrapped partial and whole-brain in vivo datasets show that the ODF-FP approach improves the detection of fiber pairs with small crossing angles while maintaining fiber direction precision, which leads to better tractography results. Rather than focusing on the ODF maxima, the ODF-FP approach uses the whole ODF shape to infer fiber directions to improve the detection of fiber bundles with small crossing angle. The resulting fiber directions aid tractography algorithms in accurately displaying neuronal tracts and calculating brain connectivity.
PMID: 31102735
ISSN: 1095-9572
CID: 3908992

Size-adaptable "Trellis" structure for tailored MRI coil arrays

Zhang, Bei; Brown, Ryan; Cloos, Martijn; Lattanzi, Riccardo; Sodickson, Daniel; Wiggins, Graham
PURPOSE/OBJECTIVE:We present a novel, geometrically adjustable, receive coil array whose diameter can be tailored to the subject in order to maximize sensitivity for a range of body sizes. THEORY AND METHODS/UNASSIGNED:A key mechanical feature of the size-adaptable receive array is its trellis structure that was motivated by similar structures found in gardening and fencing. Our implementation is a cylindrical trellis that features encircling, diagonally interleaved slats, which are linked together at intersecting points. The ensemble allows expansion or contraction to be controlled with the angle between the slats. This mechanical frame provides a base for radiofrequency coils wherein approximately constant overlap, and therefore coupling between adjacent elements, is maintained when the trellis is expanded or contracted. We demonstrate 2 trellis coil concepts for imaging lower extremity at 3T: a single-row 8-channel array built on a trellis support structure and a multirow 24-channel array in which the coil elements themselves form the trellis structure. RESULTS:We show that the adjustable trellis array can accommodate a range of subject sizes with robust signal-to-noise ratio, loading, and coupling. CONCLUSION/CONCLUSIONS:The trellis coil concept enables an array of surface coils to expand and contract with negligible effect on tuning, matching, and decoupling. This allows an encircling array to conform closely to anatomy of various sizes, which provides significant gains in signal-to-noise ratio.
PMID: 30575119
ISSN: 1522-2594
CID: 3557202

Hybrid-state free precession in nuclear magnetic resonance

Assländer, Jakob; Novikov, Dmitry S; Lattanzi, Riccardo; Sodickson, Daniel K; Cloos, Martijn A
The dynamics of large spin-1/2 ensembles are commonly described by the Bloch equation, which is characterized by the magnetization's non-linear response to the driving magnetic field. Consequently, most magnetic field variations result in non-intuitive spin dynamics, which are sensitive to small calibration errors. Although simplistic field variations result in robust spin dynamics, they do not explore the richness of the system's phase space. Here, we identify adiabaticity conditions that span a large experiment design space with tractable dynamics. All dynamics are trapped in a one-dimensional subspace, namely in the magnetization's absolute value, which is in a transient state, while its direction adiabatically follows the steady state. In this hybrid state, the polar angle is the effective drive of the spin dynamics. As an example, we optimize this drive for robust and efficient quantification of spin relaxation times and utilize it for magnetic resonance imaging of the human brain.
PMCID:6641569
PMID: 31328174
ISSN: 2399-3650
CID: 3986702

Exploring the sensitivity of magnetic resonance fingerprinting to motion

Yu, Zidan; Zhao, Tiejun; Assländer, Jakob; Lattanzi, Riccardo; Sodickson, Daniel K; Cloos, Martijn A
PURPOSE/OBJECTIVE:To explore the motion sensitivity of magnetic resonance fingerprinting (MRF), we performed experiments with different types of motion at various time intervals during multiple scans. Additionally, we investigated the possibility to correct the motion artifacts based on redundancy in MRF data. METHODS:A radial version of the FISP-MRF sequence was used to acquire one transverse slice through the brain. Three subjects were instructed to move in different patterns (in-plane rotation, through-plane wiggle, complex movements, adjust head position, and pretend itch) during different time intervals. The potential to correct motion artifacts in MRF by removing motion-corrupted data points from the fingerprints and dictionary was evaluated. RESULTS:values (-10% on average). CONCLUSION/CONCLUSIONS:Our experimental results showed that different kinds of motion have distinct effects on the precision and effective resolution of the parametric maps measured with MRF. Although MRF-based acquisitions can be relatively robust to motion effects occurring at the beginning or end of the sequence, relying on redundancy in the data alone is not sufficient to assure the accuracy of the multi-parametric maps in all cases.
PMID: 30193953
ISSN: 1873-5894
CID: 3274862

A highly decoupled transmit-receive array design with triangular elements at 7T

Chen, Gang; Zhang, Bei; Cloos, Martijn A; Sodickson, Daniel K; Wiggins, Graham C
PURPOSE/OBJECTIVE:profiles in the longitudinal (z) direction and allow for next-nearest neighbor decoupling. METHODS:Two cylindrical 8-channel arrays having the same length and diameter, 1 of triangular coils and the other of rectangular coils, were constructed and compared in phantom imaging experiments using measures of excitation distribution for a variety of RF shim settings and geometry factor maps for different accelerations on different planes. RESULTS:Coupling between elements was -20 dB or better for all triangular coil pairs, but worse than -12 dB for several of the rectangular coil pairs. Both coils could produce adequate shims on a central transverse plane, but the same shim produced worse results off center for the triangular coil array than for the rectangular coil array. Compared to the rectangular coil array, the maximum geometry factor for the triangular coil array was reduced by a factor of 13.1 when using a 2-fold acceleration in the z-direction. CONCLUSION/CONCLUSIONS:profiles along the z-direction, although this also means that individual slices must be shimmed separately. This design is well suited for parallel transmit applications while also having high receive sensitivity.
PMCID:6107369
PMID: 29572959
ISSN: 1522-2594
CID: 3001662

Multicompartment Magnetic Resonance Fingerprinting

Tang, Sunli; Fernandez-Granda, Carlos; Lannuzel, Sylvain; Bernstein, Brett; Lattanzi, Riccardo; Cloos, Martijn; Knoll, Florian; Assländer, Jakob
Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spin- relaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects intravoxel structure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartment MRF model that accounts for the presence of multiple tissues per voxel. The model is fit to the data by iteratively solving a sparse linear inverse problem at each voxel, in order to express the measured magnetization signal as a linear combination of a few elements in a precomputed fingerprint dictionary. Thresholding-based methods commonly used for sparse recovery and compressed sensing do not perform well in this setting due to the high local coherence of the dictionary. Instead, we solve this challenging sparse-recovery problem by applying reweighted-𝓁1-norm regularization, implemented using an efficient interior-point method. The proposed approach is validated with simulated data at different noise levels and undersampling factors, as well as with a controlled phantom-imaging experiment on a clinical magnetic-resonance system.
PMCID:6415771
PMID: 30880863
ISSN: 0266-5611
CID: 3733672

Publisher Correction: A high-impedance detector-array glove for magnetic resonance imaging of the hand

Zhang, Bei; Sodickson, Daniel K; Cloos, Martijn A
Owing to a technical error, this Article was originally published with an incorrect published online date of '4 May 2018'; it should have been '7 May 2018'. This has now been corrected.
PMID: 31015679
ISSN: 2157-846x
CID: 3821612

A rigid, stand-off hybrid dipole, and birdcage coil array for 7 T body imaging

Paška, Jan; Cloos, Martijn A; Wiggins, Graham C
PURPOSE/OBJECTIVE:To design a robust and patient friendly radiofrequency coil array (8-channel transmit and 16-channel receive) for cross-sectional body imaging at 7 T, and to improve our understanding of the combination of dipole and loop like elements for ultra high field strengths. METHODS:The hybrid coil array was optimized in eletromagnetic simulations. Considered array candidates were the dipole, loop and birdcage array. The winning design was constructed and the signal-to-noise (SNR) was compared to a close fitting array at 3 T. Transmit and receive properties for different body sizes were assessed, and multi-parametric maps were acquired with the Plug-and-Play MRF method. RESULTS:The winning design consists of a dipole array for transceive combined with a birdcage array for receive only. The central SNR improved by a factor of 3 as compared to a 3 T system with a local receive array. A transmit efficiency between 2.4 and 3.9 μT/kW, a specific absorption rate efficiency of 0.25 to 0.53 μT/W/kg, and a high SNR was achieved in the center for the targeted patient population. CONCLUSION/CONCLUSIONS:The constructed coil array is easy to handle, safe, and patient friendly, allowing further development of abdominal imaging at 7 T. Quantitative MRI in the abdomen is possible with Plug-and-Play MRF using the designed coil array. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
PMCID:5910212
PMID: 29250833
ISSN: 1522-2594
CID: 2894102

A high-impedance detector-array glove for magnetic resonance imaging of the hand

Zhang, Bei; Sodickson, Daniel K; Cloos, Martijn A
Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.
PMCID:6405230
PMID: 30854251
ISSN: 2157-846x
CID: 3726872