Try a new search

Format these results:

Searched for:

person:cuddas01

in-biosketch:yes

Total Results:

44


A novel human polycomb binding site acts as a functional polycomb response element in Drosophila

Cuddapah, Suresh; Roh, Tae-Young; Cui, Kairong; Jose, Cynthia C; Fuller, Margaret T; Zhao, Keji; Chen, Xin
Polycomb group (PcG) proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs), which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.
PMCID:3343078
PMID: 22570707
ISSN: 1932-6203
CID: 166805

Genomic profiling of HMGN1 reveals an association with chromatin at regulatory regions

Cuddapah, Suresh; Schones, Dustin E; Cui, Kairong; Roh, Tae-Young; Barski, Artem; Wei, Gang; Rochman, Mark; Bustin, Michael; Zhao, Keji
The interaction of architectural proteins such as the linker histone H1 and high-mobility-group (HMG) proteins with nucleosomes leads to changes in chromatin structure and histone modifications and alters the cellular transcription profile. The interaction of HMG proteins with chromatin is dynamic. However, it is not clear whether the proteins are constantly and randomly redistributed among all the nucleosomes or whether they preferentially associate with, and turn over at, specific regions in chromatin. To address this question, we examined the genome-wide distribution of the nucleosome binding protein HMGN1 and compared it to that of regulatory chromatin marks. We find that HMGN1 is not randomly distributed throughout the genome. Instead, the protein preferentially localizes to DNase I hypersensitive (HS) sites, promoters, functional enhancers, and transcription factor binding sites. Our results suggest that HMGN1 is part of the cellular machinery that modulates transcriptional fidelity by generating, maintaining, or preferentially interacting with specific sites in chromatin.
PMCID:3028635
PMID: 21173166
ISSN: 0270-7306
CID: 232472

Genome-wide approaches to studying yeast chromatin modifications

Schones, Dustin E; Cui, Kairong; Cuddapah, Suresh
The genomes of eukaryotic organisms are packaged into nuclei by wrapping DNA around proteins in a structure known as chromatin. The most basic unit of chromatin, the nucleosome, consists of approximately 146 bp of DNA wrapped around an octamer of histone proteins. The placement of nucleosomes relative to a gene can influence the regulation of the transcription of this gene. Furthermore, the N-terminal tails of histone proteins are subjected to numerous post-translational modifications that are also known to influence gene regulation. In recent years, a number of genome-scale approaches to identify modifications to chromatin have been developed. Techniques combining chromatin immunoprecipitation (ChIP) with microarrays (ChIP-chip) and second-generation sequencing (ChIP-Seq) have led to great advances in our understanding of how chromatin modifications contribute to gene regulation. Many excellent protocols related to ChIP-chip have been published recently (Lieb, J. D. (2003) Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization. Methods Mol. Biol. 224, 99-109.). For this reason, we will focus our attention here on the application of second-generation sequencing platforms to the study of chromatin modifications in yeast. As these genome-scale experiments require both wet-lab and bioinformatic components to reach their full potential, we will detail both the wet-lab protocols and bioinformatic steps necessary to fully conduct genome-scale studies of chromatin modifications.
PMID: 21863481
ISSN: 1064-3745
CID: 232462

Epigenomics of T cell activation, differentiation, and memory

Cuddapah, Suresh; Barski, Artem; Zhao, Keji
Activation of T cells is an essential step in the immunological response to infection. Although activation of naive T cells results in proliferation and slow differentiation into cytokine-producing effector cells, antigen engagement with memory cells leads to cytokine production immediately. Even though the cell surface signaling events are similar in both the cases, the outcome is different, suggesting that distinct regulatory mechanisms may exist downstream of the activation signals. Recent advances in the understanding of global epigenetic patterns in T cells have resulted in the appreciation of the role of epigenetic mechanisms in processes such as activation and differentiation. In this review we discuss recent data suggesting that naive T cell activation, differentiation, and lineage commitment result in epigenetic changes and a fine balance between different histone modifications is required. On the other hand, memory T cells are poised and do not require epigenetic changes for short-term activation
PMCID:2892201
PMID: 20226645
ISSN: 1879-0372
CID: 112085

Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes

Barski, Artem; Chepelev, Iouri; Liko, Dritan; Cuddapah, Suresh; Fleming, Alastair B; Birch, Joanna; Cui, Kairong; White, Robert J; Zhao, Keji
Epigenetic control is an important aspect of gene regulation. Despite detailed understanding of protein-coding gene expression, the transcription of noncoding RNA genes by RNA polymerase III (Pol III) is less well characterized. Here we profile the epigenetic features of Pol III target genes throughout the human genome. This reveals that the chromatin landscape of Pol III-transcribed genes resembles that of Pol II templates in many ways, although there are also clear differences. Our analysis also uncovered an entirely unexpected phenomenon: namely, that Pol II is present at the majority of genomic loci that are bound by Pol III
PMCID:2917008
PMID: 20418881
ISSN: 1545-9985
CID: 112084

Chromatin poises miRNA- and protein-coding genes for expression

Barski, Artem; Jothi, Raja; Cuddapah, Suresh; Cui, Kairong; Roh, Tae-Young; Schones, Dustin E; Zhao, Keji
Chromatin modifications have been implicated in the regulation of gene expression. While association of certain modifications with expressed or silent genes has been established, it remains unclear how changes in chromatin environment relate to changes in gene expression. In this article, we used ChIP-seq (chromatin immunoprecipitation with massively parallel sequencing) to analyze the genome-wide changes in chromatin modifications during activation of total human CD4(+) T cells by T-cell receptor (TCR) signaling. Surprisingly, we found that the chromatin modification patterns at many induced and silenced genes are relatively stable during the short-term activation of resting T cells. Active chromatin modifications were already in place for a majority of inducible protein-coding genes, even while the genes were silent in resting cells. Similarly, genes that were silenced upon T-cell activation retained positive chromatin modifications even after being silenced. To investigate if these observations are also valid for miRNA-coding genes, we systematically identified promoters for known miRNA genes using epigenetic marks and profiled their expression patterns using deep sequencing. We found that chromatin modifications can poise miRNA-coding genes as well. Our data suggest that miRNA- and protein-coding genes share similar mechanisms of regulation by chromatin modifications, which poise inducible genes for activation in response to environmental stimuli
PMCID:2765269
PMID: 19713549
ISSN: 1549-5469
CID: 112087

Native chromatin preparation and Illumina/Solexa library construction

Cuddapah, Suresh; Barski, Artem; Cui, Kairong; Schones, Dustin E; Wang, Zhibin; Wei, Gang; Zhao, Keji
PMCID:3541822
PMID: 20147195
ISSN: 1940-3402
CID: 112086

Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains

Cuddapah, Suresh; Jothi, Raja; Schones, Dustin E; Roh, Tae-Young; Cui, Kairong; Zhao, Keji
Insulators are DNA elements that prevent inappropriate interactions between the neighboring regions of the genome. They can be functionally classified as either enhancer blockers or domain barriers. CTCF (CCCTC-binding factor) is the only known major insulator-binding protein in the vertebrates and has been shown to bind many enhancer-blocking elements. However, it is not clear whether it plays a role in chromatin domain barriers between active and repressive domains. Here, we used ChIP-seq to map the genome-wide binding sites of CTCF in three cell types and identified significant binding of CTCF to the boundaries of repressive chromatin domains marked by H3K27me3. Although we find an extensive overlapping of CTCF-binding sites across the three cell types, its association with the domain boundaries is cell-type-specific. We further show that the nucleosomes flanking CTCF-binding sites are well positioned. Interestingly, we found a complementary pattern between the repressive H3K27me3 and the active H2AK5ac regions, which are separated by CTCF. Our data indicate that CTCF may play important roles in the barrier activity of insulators, and this study provides a resource for further investigation of the CTCF function in organizing chromatin in the human genome
PMCID:2612964
PMID: 19056695
ISSN: 1088-9051
CID: 112088

Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data

Jothi, Raja; Cuddapah, Suresh; Barski, Artem; Cui, Kairong; Zhao, Keji
ChIP-Seq, which combines chromatin immunoprecipitation (ChIP) with ultra high-throughput massively parallel sequencing, is increasingly being used for mapping protein-DNA interactions in-vivo on a genome scale. Typically, short sequence reads from ChIP-Seq are mapped to a reference genome for further analysis. Although genomic regions enriched with mapped reads could be inferred as approximate binding regions, short read lengths (approximately 25-50 nt) pose challenges for determining the exact binding sites within these regions. Here, we present SISSRs (Site Identification from Short Sequence Reads), a novel algorithm for precise identification of binding sites from short reads generated from ChIP-Seq experiments. The sensitivity and specificity of SISSRs are demonstrated by applying it on ChIP-Seq data for three widely studied and well-characterized human transcription factors: CTCF (CCCTC-binding factor), NRSF (neuron-restrictive silencer factor) and STAT1 (signal transducer and activator of transcription protein 1). We identified 26 814, 5813 and 73 956 binding sites for CTCF, NRSF and STAT1 proteins, respectively, which is 32, 299 and 78% more than that inferred previously for the respective proteins. Motif analysis revealed that an overwhelming majority of the identified binding sites contained the previously established consensus binding sequence for the respective proteins, thus attesting for SISSRs' accuracy. SISSRs' sensitivity and precision facilitated further analyses of ChIP-Seq data revealing interesting insights, which we believe will serve as guidance for designing ChIP-Seq experiments to map in vivo protein-DNA interactions. We also show that tag densities at the binding sites are a good indicator of protein-DNA binding affinity, which could be used to distinguish and characterize strong and weak binding sites. Using tag density as an indicator of DNA-binding affinity, we have identified core residues within the NRSF and CTCF binding sites that are critical for a stronger DNA binding
PMCID:2532738
PMID: 18684996
ISSN: 1362-4962
CID: 112089

Combinatorial patterns of histone acetylations and methylations in the human genome

Wang, Zhibin; Zang, Chongzhi; Rosenfeld, Jeffrey A; Schones, Dustin E; Barski, Artem; Cuddapah, Suresh; Cui, Kairong; Roh, Tae-Young; Peng, Weiqun; Zhang, Michael Q; Zhao, Keji
Histones are characterized by numerous posttranslational modifications that influence gene transcription. However, because of the lack of global distribution data in higher eukaryotic systems, the extent to which gene-specific combinatorial patterns of histone modifications exist remains to be determined. Here, we report the patterns derived from the analysis of 39 histone modifications in human CD4(+) T cells. Our data indicate that a large number of patterns are associated with promoters and enhancers. In particular, we identify a common modification module consisting of 17 modifications detected at 3,286 promoters. These modifications tend to colocalize in the genome and correlate with each other at an individual nucleosome level. Genes associated with this module tend to have higher expression, and addition of more modifications to this module is associated with further increased expression. Our data suggest that these histone modifications may act cooperatively to prepare chromatin for transcriptional activation
PMCID:2769248
PMID: 18552846
ISSN: 1546-1718
CID: 112090