Try a new search

Format these results:

Searched for:

person:dailel01

Total Results:

25


FGF signaling initiates multiple pathways to induce growth arrest and promote hypertrophic differentiation of chondrocytes [Meeting Abstract]

Dailey, L; LaPlantine, E; Priore, R; Basilico, C
ISI:000183123300317
ISSN: 8756-3282
CID: 38552

Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes

Dailey L; Basilico C
The highly conserved homeodomains and HMG domains are components of a large number of proteins that play a role in the transcriptional regulation of gene expression during embryogenesis. Both the HMG domain and the homeodomain serve as interfaces for factor interactions with DNA, as well as with other proteins, and it is likely that the high degree of structural and sequence conservation within these domains reflects the conservation of basic aspects of these interactions. Classical HMG domain proteins have an ancient origin, being found in all eukaryotes, and are thought to have given rise to the metazoan-specific class of HMG domain proteins called the Sox proteins. Similarly, the metazoan-specific POU domain proteins are thought to have arisen from genes encoding ancestral homeodomain proteins. In this review, we summarize several examples of different HMG-homeodomain interactions that illustrate not only the ancient origin of each of these protein families, but also their relationship to each other, and discuss how coevolution of HMG and homeodomains may have lead to creation of the specialized Sox/POU protein complexes. Using the FGF-4 gene as an example, we also speculate on how coevolution of regulatory Sox/POU target DNA sequences may have occurred, and how the summation of these changes may have lead to the emergence of new developmental pathways
PMID: 11169970
ISSN: 0021-9541
CID: 26799

Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer

Ambrosetti DC; Scholer HR; Dailey L; Basilico C
Fibroblast growth factor (FGF)-4 gene expression in the inner cell mass of the blastocyst and in EC cells requires the combined activity of two transcriptional regulators, Sox2 and Oct-3, which bind to adjacent sites on the FGF-4 enhancer DNA and synergistically activate transcription. Sox2 and Oct-3 bind cooperatively to the enhancer DNA through their DNA-binding, high mobility group and POU domains, respectively. These two domains, however, are not sufficient to activate transcription. We have analyzed a number of Sox2 and Oct-3 deletion mutants to identify the domains within each protein that contribute to the activity of the Sox2 x Oct-3 complex. Within Oct-3, we have identified two activation domains, the N-terminal AD1 and the C-terminal AD2, that play a role in the activity of the Sox2 x Oct-3 complex. AD1 also displays transcriptional activation functions in the absence of Sox2 while AD2 function was only detected within the Sox2 x Oct-3 complex. In Sox2, we have identified three activation domains within its C terminus: R1, R2, and R3. R1 and R2 can potentiate weak activation by Sox2 in the absence of Oct-3 but their deletion has no effect on the Sox2 x Oct-3 complex. In contrast, R3 function is only observed when Sox2 is complexed with Oct-3. In addition, analysis of Oct-1/Oct-3 chimeras indicates that the Oct-3 homeodomain also plays a critical role in the formation of a functional Sox2 x Oct-3 complex. Our results are consistent with a model in which the synergistic action of Sox2 and Oct-3 results from two major processes. Cooperative binding of the factors to the enhancer DNA, mediated by their binding domains, stably tethers each factor to DNA and increases the activity of intrinsic activation domains within each protein. Protein-protein and protein-DNA interactions then may lead to reciprocal conformational changes that expose latent activation domains within each protein. These findings define a mechanism that may also be utilized by other Sox x POU protein complexes in gene activation
PMID: 10801796
ISSN: 0021-9258
CID: 11713

Regulatory mechanisms governing FGF-4 gene expression during mouse development

Basilico C; Ambrosetti D; Fraidenraich D; Dailey L
PMID: 9365527
ISSN: 0021-9541
CID: 12227

Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites

Ambrosetti DC; Basilico C; Dailey L
Octamer binding and Sox factors are thought to play important roles in development by potentiating the transcriptional activation of specific gene subsets. The proteins within these factor families are related by the presence of highly conserved DNA binding domains, the octamer binding protein POU domain or the Sox factors HMG domain. We have previously shown that fibroblast growth factor 4 (FGF-4) gene expression in embryonal carcinoma cells requires a synergistic interaction between Oct-3 and Sox2 on the FGF-4 enhancer. Sox2 and Oct-3 bind to adjacent sites within this enhancer to form a ternary protein-DNA complex (Oct-3*) whose assembly correlates with enhancer activity. We now demonstrate that increasing the distance between the octamer and Sox binding sites by base pair insertion results in a loss of enhancer function. Significantly, those enhancer 'spacing mutants' which failed to activate transcription were also compromised in their ability to form the Oct* complexes even though they could still bind both Sox2 and the octamer binding proteins, suggesting that a direct interaction between Sox2 and Oct-3 is necessary for enhancer function. Consistent with this hypothesis, Oct-3 and Sox2 can participate in a direct protein-protein interaction in vitro in the absence of DNA, and both this interaction and assembly of the ternary Oct* complexes require only the octamer protein POU and Sox2 HMG domains. Assembly of the ternary complex by these two protein domains occurs in a cooperative manner on FGF-4 enhancer DNA, and the loss of this cooperative interaction contributes to the defect in Oct-3* formation observed for the enhancer spacing mutants. These observations indicate that Oct-3* assembly results from protein-protein interactions between the domains of Sox2 and Oct-3 that mediate their binding to DNA, but it also requires a specific arrangement of the binding sites within the FGF-4 enhancer DNA. Thus, these results define one parameter that is fundamental to synergistic activation by Sox2 and Oct-3 and further emphasize the critical role of enhancer DNA sequences in the proper assembly of functional activation complexes
PMCID:232483
PMID: 9343393
ISSN: 0270-7306
CID: 12266

Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3

Yuan H; Corbi N; Basilico C; Dailey L
Fibroblast growth factor 4 (FGF-4) has been shown to be a signaling molecule whose expression is essential for postimplantation mouse development and, at later embryonic stages, for limb patterning and growth. The FGF-4 gene is expressed in the blastocyst inner cell mass and later in distinct embryonic tissues but is transcriptionally silent in the adult. In tissue culture FGF-4 expression is restricted to undifferentiated embryonic stem (ES) cells and embryonal carcinoma (EC) cell lines. Previously, we determined that EC cell-specific transcriptional activation of the FGF-4 gene depends on a synergistic interaction between octamer-binding proteins and an EC-specific factor, Fx, that bind adjacent sites on the FGF-4 enhancer. Through the cloning and characterization of an F9 cell cDNA we now show that the latter activity is Sox2, a member of the Sry-related Sox factors family. Sox2 can form a ternary complex with either the ubiquitous Oct-1 or the embryonic-specific Oct-3 protein on FGF-4 enhancer DNA sequences. However, only the Sox2/Oct-3 complex is able to promote transcriptional activation. These findings identify FGF-4 as the first known embryonic target gene for Oct-3 and for any of the Sox factors, and offer insights into the mechanisms of selective gene activation by Sox and octamer-binding proteins during embryogenesis
PMID: 7590241
ISSN: 0890-9369
CID: 56811

Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer

Dailey L; Yuan H; Basilico C
Understanding how diverse transcription patterns are achieved through common factor binding elements is a fundamental question that underlies much of developmental and cellular biology. One example is provided by the fibroblast growth factor 4 (FGF-4) gene, whose expression is restricted to specific embryonic tissues during development and to undifferentiated embryonal carcinoma cells in tissue culture. Analysis of the cis- and trans-acting elements required for the activity of the previously identified FGF-4 enhancer in F9 embryonal carcinoma cells showed that enhancer function depends on sequences that bind Sp1 and ubiquitous as well as F9-specific octamer-binding proteins. However, sequences immediately upstream of the octamer motif, which conform to a binding site for the high-mobility group (HMG) domain factor family, were also critical to enhancer function. We have identified a novel F9-specific factor, Fx, which specifically recognizes this motif. Fx formed complexes with either Oct-1 or Oct-3 in a template-dependent manner. The ability of different enhancer variants to form the Oct-Fx complexes correlated with enhancer activity, indicating that these complexes play an essential role in transcriptional activation of the FGF-4 gene. Thus, while FGF-4 enhancer function is octamer site dependent, its developmentally restricted activity is determined by the interaction of octamer-binding proteins with the tissue-specific factor Fx
PMCID:359316
PMID: 7969117
ISSN: 0270-7306
CID: 14411

Common regulatory elements control gene expression from polyoma early and late promoters in cells transformed by chimeric plasmids

Kern FG; Dailey L; Basilico C
In a previous report we showed that transcripts initiating from the late promoter of integrated polyoma plasmids could be detected at significant levels when neomycin resistance (neo) coding sequences were linked to this promoter. In this report we used chimeric plasmids that contain either a limited portion of the polyoma genome or deletions within the polyoma noncoding regulatory region to determine the sequence requirements for late promoter activity in this system. We observed no absolute requirement for either the polyoma early coding region or the origin of DNA replication for Neo-r colony formation. We were therefore able to independently assess the effects of deletions in the polyoma enhancer region on gene activity in both the early and late directions. We measured the ability of cells transfected with plasmids containing deletions in this region to form colonies in either semisolid or G418-containing medium under nonreplicative conditions. Our results indicate that either the PvuII 4 fragment, which contains the simian virus 40 core enhancer sequence, or a region from nucleotides 5099 to 5142, which contains the adenovirus type 5 E1A core enhancer sequence, can be deleted without significantly affecting gene expression in either direction. However, a deletion of nucleotides 5099 to 5172 reduced activities to similar extents in both directions, and a plasmid containing a larger deletion of nucleotides 5055 to 5182 showed a further reduction in activity. Although having no effect by itself, a second origin region deletion of nucleotides 5246 to 127 when present in these mutant backgrounds caused either a further reduction or elimination, respectively, of both G418 and agar colony-forming ability, suggesting the presence of an additional common regulatory element within this region. A comparison of 5' ends of neo transcripts present in cells transformed by these plasmids suggested that the reduction in activity was due to deletion of regulatory rather than structural elements of the late promoter. Our results indicate that the noncoding region of polyoma contains multiple complementing regulatory elements that control the level of both early and late gene expression
PMCID:366925
PMID: 3018549
ISSN: 0270-7306
CID: 14438

Sequences in the polyomavirus DNA regulatory region involved in viral DNA replication and early gene expression

Dailey L; Basilico C
We constructed and analyzed a series of deletion mutants in the noncoding regulatory region of tsa polyomavirus DNA to identify some of the sequences critical to the DNA replication origin and to the expression of the viral early genes in vivo. By using both transient and long-term assays under conditions where the influence of large T antigen (T-Ag) in replication or autoregulation was minimized, we observed no more than a 30% reduction in early gene expression upon removal of the CAAT or TATA elements or both. These assays demonstrated a predominant effect of upstream promoter or enhancer elements and indicated that removal of the CAAT or TATA boxes did not significantly affect viral early gene expression. Studies on the replicative ability of these mutants in mouse cells constitutively expressing the polyoma early proteins revealed that the removal of DNA sequences contained within a previously identified T-Ag high-affinity binding site (nucleotides 39 to 64) abolished viral DNA replication, whereas removal of two other high-affinity sites, closer to the early mRNA cap sites, did not. Furthermore, a deletion including this same high-affinity site plus a low-affinity binding site within the 32-base-pair palindrome of the origin core sequences eliminated the ability of the viral large T-Ag to efficiently repress early gene transcription. It is thus possible that the origin-proximal high-affinity T-Ag binding site is involved in both of the functions of large T-Ag, i.e., the initiation of viral DNA replication and the autoregulation of early gene transcription
PMCID:254860
PMID: 2987528
ISSN: 0022-538x
CID: 14439

Amplification and excision of integrated polyoma DNA sequences require a functional origin of replication

Pellegrini S; Dailey L; Basilico C
Cells transformed by Polyoma virus (Py) can undergo a high rate of excision or amplification of integrated viral DNA sequences, and these phenomena require the presence of homology (i.e., repeats) within the viral insertion as well as a functional viral large T antigen (T-Ag). To determine whether the main role of large T-Ag in excision and amplification was replicative or recombination-promoting, we studied transformed rat cell lines containing tandem insertions of a ts-a Py molecule (encoding a thermolabile large T-Ag) with a deletion of the origin of viral DNA replication. Culturing of these cells at the temperature permissive for large T-Ag function did not result in any detectable excision or amplification of integrated Py sequences. We then introduced into origin-defective lines a recombinant plasmid containing the viral origin of replication and the gene coding for resistance to the antibiotic G418. All G418-resistant clones analyzed readily amplified the integrated plasmid molecules when grown under conditions permissive for large T-Ag function, showing that these cells produced viral large T-Ag capable of promoting amplification in trans of DNA sequences containing the Py origin. These observations strongly suggest that Polyoma large T antigen promotes excision or amplification of viral DNA by initiating replication at the integrated origin, providing a favorable substrate for subsequent recombination
PMID: 6323029
ISSN: 0092-8674
CID: 14443