Try a new search

Format these results:

Searched for:

person:darwih01

in-biosketch:yes

Total Results:

78


Development of Tyrphostin Analogues to Study Inhibition of the Mycobacterium tuberculosis Pup Proteasome System*

Janssen, Guido V; Zhang, Susan; Merkx, Remco; Schiesswohl, Christa; Chatterjee, Champak; Darwin, K Heran; Geurink, Paul P; van der Heden van Noort, Gerbrand J; Ovaa, Huib
Tuberculosis is a global health problem caused by infection with the Mycobacterium tuberculosis (Mtb) bacteria. Although antibiotic treatment has dramatically reduced the impact of tuberculosis on the population, the existence and spreading of drug resistant strains urgently demands the development of new drugs that target Mtb in a different manner than currently used antibiotics. The prokaryotic ubiquitin-like protein (Pup) proteasome system is an attractive target for new drug development as it is unique to Mtb and related bacterial genera. Using a Pup-based fluorogenic substrate, we screened for inhibitors of Dop, the Mtb depupylating protease, and identified I-OMe-Tyrphostin AG538 (1) and Tyrphostin AG538 (2). The hits were validated and determined to be fast-reversible, non-ATP competitive inhibitors. We synthesized >25 analogs of 1 and 2 and show that several of the synthesized compounds also inhibit the depupylation actions of Dop on native substrate, FabD-Pup. Importantly, the pupylation activity of PafA, the sole Pup ligase in Mtb, was also inhibited by some of these compounds.
PMID: 34387015
ISSN: 1439-7633
CID: 5010872

Mycobacterium tuberculosis: the honey badger of pathogens

Darwin, K Heran
Mycobacterium tuberculosis is a fascinating object of study: it is one of the deadliest pathogens of humankind, able to fend off persistent attacks by the immune system or drugs.
PMCID:8419694
PMID: 34322986
ISSN: 1469-3178
CID: 5004062

Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons

Ji, Daisy X; Witt, Kristen C; Kotov, Dmitri I; Margolis, Shally R; Louie, Alexander; Chevée, Victoria; Chen, Katherine J; Gaidt, Moritz M; Dhaliwal, Harmandeep S; Lee, Angus Y; Nishimura, Stephen L; Zamboni, Dario S; Kramnik, Igor; Portnoy, Daniel A; Darwin, K Heran; Vance, Russell E
Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140
PMCID:8248984
PMID: 34151776
ISSN: 2050-084x
CID: 4964842

Macrocyclic Peptides that Selectively Inhibit the Mycobacterium tuberculosis Proteasome

Zhang, Hao; Hsu, Hao-Chi; Kahne, Shoshanna C; Hara, Ryoma; Zhan, Wenhu; Jiang, Xiuju; Burns-Huang, Kristin; Ouellette, Tierra; Imaeda, Toshihiro; Okamoto, Rei; Kawasaki, Masanori; Michino, Mayako; Wong, Tzu-Tshin; Toita, Akinori; Yukawa, Takafumi; Moraca, Francesca; Vendome, Jeremie; Saha, Priya; Sato, Kenjiro; Aso, Kazuyoshi; Ginn, John; Meinke, Peter T; Foley, Michael; Nathan, Carl F; Darwin, K Heran; Li, Huilin; Lin, Gang
Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.
PMID: 33949190
ISSN: 1520-4804
CID: 4874002

The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome

Yin, Yanting; Kovach, Amanda; Hsu, Hao-Chi; Darwin, K Heran; Li, Huilin
Although many bacterial species do not possess proteasome systems, the actinobacteria, including the human pathogen Mycobacterium tuberculosis, use proteasome systems for targeted protein removal. Previous structural analyses of the mycobacterial proteasome ATPase Mpa revealed a general structural conservation with the archaeal PAN (proteasome-activating nucleotidase) and eukaryotic proteasomal Rpt1-6 ATPases, such as the N-terminal coiled coil domain, the OB (oligosaccharide/oligonucleotide-binding) domain, and the ATPase domain. However, Mpa has a unique β-grasp domain that in the ADP-bound crystal structure appears to interfere with the docking to the 20S proteasome core particle. Thus, it is unclear how Mpa binds to proteasome core particles. In this report, we show by cryo-EM that the Mpa hexamer in the presence of a degradation substrate and ATP forms a gapped ring, with two out of its six ATPase domains being highly flexible. We found that the linkers between the oligonucleotide binding and ATPase domains undergo conformational changes that are important for function, revealing a previously unappreciated role of the linker region in ATP-hydrolysis-driven protein unfolding. We propose that this gapped ring configuration is an intermediate state that helps rearrange its β-grasp domains and activating C-termini to facilitate engagement with proteasome core particles. This work provides new insights into the crucial process of how an ATPase interacts with a bacterial proteasome protease.
PMCID:8142254
PMID: 33930464
ISSN: 1083-351x
CID: 4924112

Work life balance?

Darwin, K Heran
There is no perfect recipe to balance work and life in academic research. Everyone has to find their own optimal balance to derive fulfilment from life and work.
PMID: 33844414
ISSN: 1469-3178
CID: 4840992

After the year of the dumpster fire

Darwin, K Heran
2020 has been one of the craziest and strangest years we have lived through. Now that it's over, it's an opportunity to show gratitude for all the good things.
PMCID:7926249
PMID: 33599025
ISSN: 1469-3178
CID: 4823252

Dr. Manners

Darwin, K Heran
Good manners make a difference-in science and elsewhere. This includes our social media etiquette as researchers.
PMID: 33289267
ISSN: 1469-3178
CID: 4716422

Structural determinants of regulated proteolysis in pathogenic bacteria by ClpP and the proteasome

Kahne, Shoshanna C; Darwin, K Heran
Bacteria use gated proteolytic machines for routine protein quality control and regulated responses to environmental conditions. This review discusses recent advances in understanding the structure and regulation of ClpP proteases, nanomachines widely distributed across bacteria, and the bacterial proteasome, a protease found in relatively few species. For both machines, activators confer substrate specificity. We highlight new data from organisms encoding two ClpP isoforms and the central role of activators as platforms for integrating regulatory signals. Because proteolytic systems contribute to survival and virulence of many bacterial pathogens, understanding their forms and functions enables new approaches to design targeted therapeutics.
PMID: 33221704
ISSN: 1879-033x
CID: 4734692

Bandwagoning

Darwin, K Heran
COVID-19 has caused a "Hunger Games" like run for emergency funding that risks detracting away from other diseases that ravage humanity.
PMID: 33063444
ISSN: 1469-3178
CID: 4651892