Try a new search

Format these results:

Searched for:

person:del243

Total Results:

216


STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation

Gough, Daniel J; Marie, Isabelle J; Lobry, Camille; Aifantis, Iannis; Levy, David E
Juvenile myelomonocytic leukemia, acute myeloid leukemia (AML), and other myeloproliferative neoplasms (MPNs) are genetically heterogeneous but frequently display activating mutations in Ras GTPases and activation of signal transducer and activator of transcription 3 (STAT3). Altered STAT3 activity is observed in up to 50% of AML correlating with poor prognosis. Activated STAT proteins, classically associated with tyrosine phosphorylation, support tumor development as transcription factors, but alternative STAT functions independent of tyrosine phosphorylation have been documented, including roles for serine-phosphorylated STAT3 in mitochondria supporting transformation by oncogenic Ras. We examined requirements for STAT3 in experimental murine K-Ras-dependent hematopoietic neoplasia. We show that STAT3 is phosphorylated on S727 but not Y705 in diseased animals. Moreover, a mouse with a point mutation abrogating STAT3 S727 phosphorylation displayed delayed onset and decreased disease severity with significantly extended survival. Activated K-Ras required STAT3 for cytokine-independent growth of myeloid progenitors in vitro, and mitochondrially restricted STAT3 and STAT3-Y705F, both transcriptionally inert mutants, supported factor-independent growth. STAT3 was dispensable for growth of normal or K-Ras-mutant myeloid progenitors in response to cytokines. However, abrogation of STAT3-S727 phosphorylation impaired factor-independent malignant growth. These data document that serine-phosphorylated mitochondrial STAT3 supports neoplastic hematopoietic cell growth induced by K-Ras.
PMCID:4183984
PMID: 25150294
ISSN: 0006-4971
CID: 1298802

The human RVB complex is required for efficient transcription of type I interferon-stimulated genes

Gnatovskiy, Leonid; Mita, Paolo; Levy, David E
Type I interferons (IFNs) stimulate transcription through a latent heterotrimeric transcription factor composed of tyrosine-phosphorylated STAT1 and STAT2 and the DNA binding partner IRF9, with STAT2 contributing a critical transactivation domain. Human RVB1 and RVB2, which are highly conserved AAA(+) ATP binding proteins contained in chromatin-remodeling complexes such as Ino80, SNF2-related CBP activator protein (SRCAP), and Tip60/NuA4, interacted with the transactivation domain of STAT2 in the nuclei of IFN-stimulated cells. RNA interference (RNAi) experiments demonstrated that RVB proteins were required for robust activation of IFN-alpha-stimulated genes (ISGs). The requirement for RVB proteins was specific to IFN-alpha/STAT2 signaling; transcription of tumor necrosis factor alpha (TNF-alpha)- and IFN-gamma-driven genes was not affected by RVB1 depletion. Using RNAi-based depletion, we assessed the involvement of catalytic subunits of the RVB-containing Tip60, BRD8, Ino80, SRCAP, and URI complexes. No component other than RVB1/2 was uniquely required for ISG induction, suggesting that RVB1/2 functions as part of an as yet unidentified complex. Chromatin immunoprecipitation assays indicated that RVB1/2 was required for recruitment of RNA polymerase II (Pol II) to ISG promoters but was dispensable for STAT2 recruitment to chromatin. We hypothesize that an RVB1/2 chromatin-remodeling complex is required for efficient Pol II recruitment and initiation at ISG promoters and is recruited through interaction with the STAT2 transactivation domain.
PMCID:3811876
PMID: 23878400
ISSN: 0270-7306
CID: 575612

Mitochondrial STAT3 supports K-Ras driven myeloid leukaemia in vivo [Meeting Abstract]

Gough, Daniel J.; Levy, David E.
ISI:000324013700112
ISSN: 1043-4666
CID: 557542

The MEK-ERK Pathway Is Necessary for Serine Phosphorylation of Mitochondrial STAT3 and Ras-Mediated Transformation

Gough, Daniel J; Koetz, Lisa; Levy, David E
Activating mutations in the RasGTPases are the most common oncogenic lesions in human cancer. Similarly, elevated STAT3 expression and/or phosphorylation are observed in the majority of human cancers. We recently found that activated Ras requires a mitochondrial rather than a nuclear activity of STAT3 to support cellular transformation. This mitochondrial activity of STAT3 was supported by phosphorylation on serine 727 (S727) in the carboxyl-terminus of STAT3. In this study we show that the H-Ras oncoprotein engages the MEK-ERK pathway to drive phosphorylation of STAT3 on S727, while phosphoinositide 3-kinase (PI3K) and mTOR activity were superfluous. Moreover, pharmacological inhibition of MEK reduced transformation by H-, K- or N-Ras. However, cells expressing a mitochondrially restricted STAT3 with a phospho-mimetic mutation at S727 were partially resistant to inhibition of the ERK pathway, exhibiting a partial rescue of anchorage-independent cell growth in the presence of MEK inhibitor. This study shows that the MEK-ERK pathway is required for activated Ras-induced phosphorylation of STAT3 on S727, that inhibition of STAT3 S727 phosphorylation contributes to the anti-oncogenic potential of MEK inhibitors, and that mitochondrial STAT3 is one of the critical substrates of the Ras-MEK-ERK- axis during cellular transformation.
PMCID:3843736
PMID: 24312439
ISSN: 1932-6203
CID: 681112

Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface

Nancy, Patrice; Tagliani, Elisa; Tay, Chin-Siean; Asp, Patrik; Levy, David E; Erlebacher, Adrian
The chemokine-mediated recruitment of effector T cells to sites of inflammation is a central feature of the immune response. The extent to which chemokine expression levels are limited by the intrinsic developmental characteristics of a tissue has remained unexplored. We show in mice that effector T cells cannot accumulate within the decidua, the specialized stromal tissue encapsulating the fetus and placenta. Impaired accumulation was in part attributable to the epigenetic silencing of key T cell-attracting inflammatory chemokine genes in decidual stromal cells, as evidenced by promoter accrual of repressive histone marks. These findings give insight into mechanisms of fetomaternal immune tolerance, as well as reveal the epigenetic modification of tissue stromal cells as a modality for limiting effector T cell trafficking.
PMCID:3727649
PMID: 22679098
ISSN: 0036-8075
CID: 169515

STATus Report on Tetramers

Levy, David E; Marie, Isabelle J
STAT proteins bind DNA as dimers to regulate gene expression. Cooperative recruitment of pairs of dimers (tetramers) to adjacent DNA sites has also been documented. In this issue, Lin et al. (2012) examined tetramer function in vivo and showed that STAT5 tetramers function primarily as transcriptional activators.
PMID: 22520849
ISSN: 1074-7613
CID: 165619

Contribution of a TANK-Binding Kinase 1-Interferon (IFN) Regulatory Factor 7 Pathway to IFN-gamma-Induced Gene Expression

Farlik, Matthias; Rapp, Birgit; Marie, Isabelle; Levy, David E; Jamieson, Amanda M; Decker, Thomas
Signal transducers and activators of transcription (STATs) and interferon regulatory factors (IRFs) share common target genes. Here we show that the Irf7 gene is regulated by transcription factors STAT1 and IRF9 in response to the type II interferon (IFN) IFN-gamma. IRF7 cooperated with STAT1 and IRF1 to stimulate the expression of a subset of IFN-gamma-induced STAT1 target genes. IRF7-mediated control of the Gbp2 gene required the presence and basal activity of the S/T kinase TANK-binding kinase 1 (TBK1), whereas the binding of IRF7 to the Gbp2 promoter did not. Analysis of RNA polymerase II (Pol II) recruitment to the Gbp2 promoter revealed a role for IRF7 at later stages of the IFN-gamma response. In support of the role of IRF7 in establishing an effective antibacterial response, IFN-gamma-pretreated Irf7(-/-) macrophages showed an increased bacterial burden after infection with Listeria monocytogenes. Our data thus describe a biologically relevant basal activity of TBK1 and identify IRF7 as a novel player in the IFN-gamma response.
PMCID:3295005
PMID: 22252317
ISSN: 0270-7306
CID: 160243

Constitutive Type I Interferon Modulates Homeostatic Balance through Tonic Signaling

Gough, Daniel J; Messina, Nicole L; Clarke, Christopher J P; Johnstone, Ricky W; Levy, David E
Interferons (IFNs) were discovered as cytokines induced during and protecting from viral infection. They have been documented to play essential roles in numerous physiological processes beyond antiviral and antimicrobial defense, including immunomodulation, cell cycle regulation, cell survival, and cell differentiation. Recent data have also uncovered a potentially darker side to IFN, including roles in inflammatory diseases, such as autoimmunity and diabetes. IFN can have effects in the absence of acute infection, highlighting a physiologic role for constitutive IFN. Type I IFNs are constitutively produced at vanishingly low quantities and yet exert profound effects, mediated in part through modulation of signaling intermediates required for responses to diverse cytokines. We review evidence for a yin-yang of IFN function through its role in modulating crosstalk between multiple cytokines by both feedforward and feedback regulation of common signaling intermediates and postulate a homeostatic role for IFN through tonic signaling in the absence of acute infection.
PMCID:3294371
PMID: 22365663
ISSN: 1074-7613
CID: 158280

Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P; Forst, Christian V; Roth, Michael G; Levy, David E; Garcia-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A; Fontoura, Beatriz M A
The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors.
PMCID:3275370
PMID: 22312003
ISSN: 0021-9525
CID: 158676

STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas

Chan, Szeman Ruby; Vermi, William; Luo, Jingqin; Lucini, Laura; Rickert, Charles; Fowler, Amy M; Lonardi, Silvia; Arthur, Cora; Young, Larry Jt; Levy, David E; Welch, Michael J; Cardiff, Robert D; Schreiber, Robert D
INTRODUCTION/BACKGROUND:Although breast cancers expressing estrogen receptor-α (ERα) and progesterone receptors (PR) are the most common form of mammary malignancy in humans, it has been difficult to develop a suitable mouse model showing similar steroid hormone responsiveness. STAT transcription factors play critical roles in mammary gland tumorigenesis, but the precise role of STAT1 remains unclear. Herein, we show that a subset of human breast cancers display reduced STAT1 expression and that mice lacking STAT1 surprisingly develop ERα+/PR+ mammary tumors. METHODS:We used a combination of approaches, including histological examination, gene targeted mice, gene expression analysis, tumor transplantaion, and immunophenotyping, to pursue this study. RESULTS:Forty-five percent (37/83) of human ERα+ and 22% (17/78) of ERα- breast cancers display undetectable or low levels of STAT1 expression in neoplastic cells. In contrast, STAT1 expression is elevated in epithelial cells of normal breast tissues adjacent to the malignant lesions, suggesting that STAT1 is selectively downregulated in the tumor cells during tumor progression. Interestingly, the expression levels of STAT1 in the tumor-infiltrating stromal cells remain elevated, indicating that single-cell resolution analysis of STAT1 level in primary breast cancer biopsies is necessary for accurate assessment. Female mice lacking functional STAT1 spontaneously develop mammary adenocarcinomas that comprise > 90% ERα+/PR+ tumor cells, and depend on estrogen for tumor engraftment and progression. Phenotypic marker analyses demonstrate that STAT1-/- mammary tumors arise from luminal epithelial cells, but not myoepithelial cells. In addition, the molecular signature of the STAT1-/- mammary tumors overlaps closely to that of human luminal breast cancers. Finally, introduction of wildtype STAT1, but not a STAT1 mutant lacking the critical Tyr701 residue, into STAT1-/- mammary tumor cells results in apoptosis, demonstrating that the tumor suppressor function of STAT1 is cell-autonomous and requires its transcriptional activity. CONCLUSIONS:Our findings demonstrate that STAT1 suppresses mammary tumor formation and its expression is frequently lost during breast cancer progression. Spontaneous mammary tumors that develop in STAT1-/- mice closely recapitulate the progression, ovarian hormone responsiveness, and molecular characteristics of human luminal breast cancer, the most common subtype of human breast neoplasms, and thus represent a valuable platform for testing novel treatments and detection modalities.
PMCID:3496133
PMID: 22264274
ISSN: 1465-542x
CID: 2904782