Try a new search

Format these results:

Searched for:

person:ejs4

in-biosketch:yes

Total Results:

260


Delta opioid activation of the mitogen-activated protein kinase cascade does not require transphosphorylation of receptor tyrosine kinases

Kramer, H Kenneth; Onoprishvili, Irma; Andria, Matthew L; Hanna, Kayane; Sheinkman, Karina; Haddad, Lisa B; Simon, Eric J
BACKGROUND: In this study, we investigated the mechanism(s) by which delta opioids induce their potent activation of extracellular signal-regulated protein kinases (ERKs) in different cell lines expressing the cloned delta-opioid receptor (delta-OR). While it has been known for some time that OR stimulation leads to the phosphorylation of both ERK isoforms, the exact progression of events has remained elusive. RESULTS: Our results indicate that the transphosphorylation of an endogenous epidermal growth factor receptor (EGFR) in the human embryonic kidney (HEK-293) cell line does not occur when co-expressed delta-ORs are stimulated by the delta-opioid agonist, D-Ser-Leu-enkephalin-Thr (DSLET). Moreover, neither pre-incubation of cultures with the selective EGFR antagonist, AG1478, nor down-regulation of the EGFR to a point where EGF could no longer activate ERKs had an inhibitory effect on ERK activation by DSLET. These results appear to rule out any structural or catalytic role for the EGFR in the delta-opioid-mediated MAPK cascade. To confirm these results, we used C6 glioma cells, a cell line devoid of the EGFR. In delta-OR-expressing C6 glioma cells, opioids produce a robust phosphorylation of ERK 1 and 2, whereas EGF has no stimulatory effect. Furthermore, antagonists to the RTKs that are endogenously expressed in C6 glioma cells (insulin receptor (IR) and platelet-derived growth factor receptor (PDGFR)) were unable to reduce opioid-mediated ERK activation. CONCLUSION: Taken together, these data suggest that the transactivation of resident RTKs does not appear to be required for OR-mediated ERK phosphorylation and that the tyrosine-phosphorylated delta-OR, itself, is likely to act as its own signalling scaffold
PMCID:88976
PMID: 11897012
ISSN: 1471-2210
CID: 63621

Identification of a neurorestrictive suppressor element (NRSE) in the human mu-opioid receptor gene

Andria ML; Simon EJ
Analysis of the DNA sequence of the human &mgr;-opioid receptor gene (MOR) revealed that a region overlapping the start codon was substantially homologous to a DNA element named the neurorestrictive suppressor element (NRSE) or restrictive element 1 (RE-1). Transient transfection experiments in the L929 and HEK non-neural cell lines showed that expression of a MOR promoter/reporter gene construct was suppressed in non-neural cell lines by inclusion of this MOR NRSE. Expression from a thymidine kinase promoter was also suppressed when the MOR NRSE was inserted upstream or downstream of the reporter gene. The MOR NRSE did not suppress expression of the reporter gene in neural derived cell lines, IMR-32 and Neuro 2a. The transcription factor REST which binds NRSE thereby enacting the suppression of transcription, was encoded in a plasmid and co-transfected into the IMR-32 cells. The REST co-transfected neuronal derived (IMR-32) cells became sensitive to the MOR NRSE mediated suppression of reporter gene expression. Electrophoretic mobility shift experiments revealed that oligonucleotides containing the MOR NRSE were bound by a factor from nuclear extracts of non-neural cell lines, HeLa and Jurkat. This binding was specifically competed by oligonucleotides containing NRSE sequences previously shown to suppress transcription through REST. Thus an NRSE element overlapping the human MOR start codon suppresses gene expression in non-neural cell lines and may help direct neural tissue specific expression of MOR
PMID: 11457494
ISSN: 0169-328x
CID: 21117

Mu-, delta- and kappa-opioid receptor populations are differentially altered in distinct areas of postmortem brains of Alzheimer's disease patients

Mathieu-Kia AM; Fan LQ; Kreek MJ; Simon EJ; Hiller JM
The putative role of the opioid system in cognitive and memory functions prompted us to search for possible changes in the cohort of the major opioid receptors, mu, delta and kappa, in Alzheimer's disease. The present study examines alterations in opioid receptor levels by quantitative autoradiography. These experiments were carried out on coronal sections of postmortem brains from Alzheimer's disease patients and from aged-matched, dementia-free individuals. Brain sections were labeled with the tritiated forms of mu-, delta- and kappa-opioid ligands; DAMGO ([D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin), DPDPE ([D-Pen2,5]-enkephalin) and bremazocine (in the presence of mu- and delta-ligands), respectively. Nonspecific binding was determined in the presence of naloxone (10 microM). Brain areas analyzed were caudate, putamen, amygdaloid complex, hippocampal formation and various cerebral and cerebellar cortices. Image analyses of autoradiographs show, that in comparison to the same areas in control brain, statistically significant reductions in mu-opioid receptor binding occur in the subiculum and hippocampus of Alzheimer's disease brains. Binding of delta-opioid receptors is also decreased in the amygdaloid complex and ventral putamen of Alzheimer's disease brains. In contrast, large increases of kappa-opioid receptor binding are found in the dorsal and ventral putamen as well as in the cerebellar cortex of Alzheimer's disease brains. Levels of mu- delta- and kappa-opioid receptor binding are unaltered in the caudate, parahippocampal gyrus and occipito-temporal gyrus. These results may suggest an involvement of the endogenous opioid system in some of the multitude of effects that accompany this dementia
PMID: 11223000
ISSN: 0006-8993
CID: 63622

Tyrosine phosphorylation of the delta-opioid receptor. Evidence for its role in mitogen-activated protein kinase activation and receptor internalization

Kramer HK; Andria ML; Esposito DH; Simon EJ
The internalization of G-protein-coupled receptors (GPCRs), including the delta opioid receptor (delta-OR), has been shown to involve the phosphorylation of serine and threonine residues. However, recent studies suggest that these residues may not be the only ones phosphorylated in response to prolonged opioid exposure. Tyrosines also appear important for delta-OR signalling, but it remains unclear whether they undergo phosphorylation. We examined whether the delta-OR, stably expressed in Chinese hamster ovary (CHO-K1) cells, was tyrosine-phosphorylated during prolonged agonist treatment. The epitope-tagged delta-OR was purified by immunoprecipitation, and the presence of phosphorylated tyrosines was detected using anti-phosphotyrosine antibodies. Tyrosine residues in the delta-OR were phosphorylated after exposure to the high-affinity agonist [d-Thr(2)]-Leu-enkephalin-Thr (DTLET) in a time- and concentration-dependent manner. Tyrosine phosphorylation of the delta-OR appeared to require the actions of a Src-like protein tyrosine kinase, since the Src inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)-pyrazolo-[3,4-d]-pyrimidine (PP1) attenuated this response. PP1 also attenuated the DTLET-mediated activation of mitogen-activated protein kinase, as well as rapid delta-OR internalization, but not receptor down-regulation. Finally, only opioid agonists that induce receptor internalization via the clathrin-dependent endosomal pathway stimulated significant tyrosine phosphorylation of the delta-OR protein. Evidence is presented that the delta-OR is tyrosine-phosphorylated, and we suggest how this may have an active role in opioid receptor signalling and regulation
PMID: 10930532
ISSN: 0006-2952
CID: 11563

mu and delta-opioid receptor agonists induce mitogen-activated protein kinase (MAPK) activation in the absence of receptor internalization

Kramer HK; Simon EJ
Agonist-promoted internalization (endocytosis) of G-protein-coupled receptors (GPCRs), including all three opioid receptor types (mu, delta and kappa), has been shown to occur via the clathrin endosomal pathway in response to receptor phosphorylation and the actions of the proteins, beta-arrestin and dynamin. Many members of the GPCR family stimulate mitogen-activated protein kinases (MAPK or ERK) activity and, in several cases, it appears that MAPK activation is dependent on receptor internalization. We have reinvestigated the question of whether internalization is obligatory for MAPK activation by opioid receptors, using cell lines expressing the cloned mu or delta receptor. Morphine, which is known to activate both mu and delta receptors, does not induce their rapid internalization into clathrin-coated endosomes. However, morphine produced a robust stimulation of MAPK in both cell lines, as demonstrated by the appearance of phosphorylated MAPK. Moreover, pre-exposure of cells to the internalization inhibitors, concanavalin A or hypertonic sucrose, totally blocked DAMGO mu-selective agonist) and DTLET (delta-selective agonist)-mediated receptor internalization, yet neither treatment affected MAPK phosphorylation induced by these peptides. Our results provide evidence that receptor internalization is not an obligatory requirement for MAPK activation by mu and delta opioid receptors. Hypotheses are presented to explain the seemingly contradictory results obtained from different laboratories
PMID: 10884553
ISSN: 0028-3908
CID: 11613

Mutation of tyrosine 318 (Y318F) in the delta-opioid receptor attenuates tyrosine phosphorylation, agonist-dependent receptor internalization, and mitogen-activated protein kinase activation [In Process Citation]

Kramer HK; Andria ML; Kushner SA; Esposito DH; Hiller JM; Simon EJ
Opioid receptors are known for their ability to activate diverse second messenger systems. Previously, we showed that selective delta-opioid agonists were able to induce the rapid tyrosine phosphorylation of delta-opioid receptors (delta-ORs) through Src. Src-dependent tyrosine phosphorylation of delta-ORs appears to be important for activation of the mitogen-activated protein kinase cascade and for receptor sequestration into clathrin-coated endosomes, as the Src antagonist, PP1, inhibited both. In an attempt to clarify the role of tyrosine phosphorylation in delta-OR signalling and regulation, we constructed a mutant receptor in which the tyrosine located in the conserved NPXXY motif of the C-terminus was replaced by a phenylalanine (Y318F-delta-OR). Mutation of Y318 resulted in a receptor that was comparable to the wild type in its expression level in HEK-293 cells and in its affinity for opioid ligands. Both receptors showed effective coupling to G proteins and were capable of inhibiting forskolin-stimulated cAMP accumulation with similar potencies. However, the mutant receptor was able to stimulate (35)S-GTPgammaS binding with a lower EC(50) than the wild type receptor. The stimulation of tyrosine phosphorylation in delta-ORs by [D-Thr(2)]-Leu-enkephalin-Thr (DTLET) was significantly less in cells expressing the Y318F-delta-OR than in cells expressing the wild type. In addition, both rapid receptor internalization and down-regulation were markedly attenuated in the mutant. Finally, the mutant receptor was unable to induce a robust activation of the MAPK pathway, suggesting that tyrosine phosphorylation of the delta-OR protein is important for this signalling pathway. These findings implicate tyrosine phosphorylation of Y318 in receptor signalling and agonist-mediated regulation
PMID: 10925143
ISSN: 0169-328x
CID: 11570

AJAX:An Extensible Data Cleaning Tool

Galhardas, Helena; Florescu, Daniela; Simon, Eric; Shasha, Dennis
SCOPUS:85012212427
ISSN: 0163-5808
CID: 2870182

Extensible framework for data cleaning

Chapter by: Galhardas, Helena; Florescu, Daniela; Shasha, Dennis; Simon, Eric
in: Proceedings - International Conference on Data Engineering by
[S.l. : s.n.], 2000
pp. 312-?
ISBN:
CID: 2870212

The bovine mu-opioid receptor: cloning of cDNA and pharmacological characterization of the receptor expressed in mammalian cells

Onoprishvili I; Andria ML; Vilim FS; Hiller JM; Simon EJ
The cDNA coding for the bovine mu-opioid receptor has been cloned and sequenced. Conserved sequences from murine delta-receptor cDNA were used as primers in polymerase chain reaction (PCR) to amplify cDNA, prepared by reverse transcription of bovine brain mRNA. This cDNA was used to probe a bovine brain library. The partial sequence obtained was extended to provide the full length clone by PCR. The cDNA has an open reading frame of 1203 base pairs (bp) with a 3'-untranslated region of 1900 bp and a 5'-untranslated region of 265 bp. The protein contains 401 amino acids and has 94% amino acid identity with the human and 91% with the rat mu-opioid receptor. It has the putative seven transmembrane domains, characteristic of G protein-coupled receptors and contains 5 potential N-linked glycosylation sites near the N-terminus. Several potential phosphorylation sites and a putative palmitoylation site are also present. The receptor was stably expressed in HEK293 cells. The binding profile was found to be that of a typical mu receptor, i. e., mu agonists and antagonists, but not delta and kappa ligands, bound with high affinity. Functional assays, namely, opioid stimulation of [35S]GTPgammaS binding and inhibition of forskolin-activated adenylyl cyclase, were also found to be highly specific for mu-opioid agonists. The receptor was downregulated by chronic exposure to mu agonists but not delta or kappa agonists. Evidence is presented indicating that the cloned receptor is the same as the bovine mu receptor previously purified to homogeneity in our laboratory. No evidence was found for genes for multiple mu-type opioid receptors
PMID: 10581406
ISSN: 0169-328x
CID: 11915

Localization of promoter elements in the human mu-opioid receptor gene and regulation by DNA methylation

Andria ML; Simon EJ
The regulation of mu-opioid receptor gene expression was investigated using several molecular techniques. Genomic clones containing portions of the human mu-opioid receptor gene were sequenced. 5'-RACE analysis of human brain cDNA confirmed the presence of mRNAs up to -313 from the start codon. As was found for the mouse and rat genes, transcription apparently initiates in the absence of a discernable TATA box. To characterize promoter function, portions of the 5'-flanking region were linked to a reporter gene in transient transfection experiments. Two approximately 50 bp adjacent segments had potent, orientation specific promoter activity. More down-stream segments also had promoter activity. None of the 5'-flanking region constructs showed tissue specificity. The potential role of DNA methylation in preventing ectopic expression was investigated by surveying the methylation state of a CpG rich region straddling the start codon. A neural derived cell line (SH-SY5Y) that expresses the mu-opioid receptor lacked virtually any CpG methylation. In contrast, two neural derived cell lines that do not express the mu-opioid receptor were nearly totally methylated while non-neural cell lines had intermediate levels of CpG methylation. Additional transient transfection experiments revealed that CpG methylation of the 5'-flanking region suppressed reporter gene expression. These results indicate that CpG methylation plays an important role in regulating mu-opioid receptor expression in neural cells; however, no association was found with regulation of expression in non-neural cells
PMID: 10381543
ISSN: 0169-328x
CID: 56449