Try a new search

Format these results:

Searched for:

person:eps2

in-biosketch:yes

Total Results:

236


Selectivity and tolerance for visual texture in macaque V2

Ziemba, Corey M; Freeman, Jeremy; Movshon, J Anthony; Simoncelli, Eero P
As information propagates along the ventral visual hierarchy, neuronal responses become both more specific for particular image features and more tolerant of image transformations that preserve those features. Here, we present evidence that neurons in area V2 are selective for local statistics that occur in natural visual textures, and tolerant of manipulations that preserve these statistics. Texture stimuli were generated by sampling from a statistical model, with parameters chosen to match the parameters of a set of visually distinct natural texture images. Stimuli generated with the same statistics are perceptually similar to each other despite differences, arising from the sampling process, in the precise spatial location of features. We assessed the accuracy with which these textures could be classified based on the responses of V1 and V2 neurons recorded individually in anesthetized macaque monkeys. We also assessed the accuracy with which particular samples could be identified, relative to other statistically matched samples. For populations of up to 100 cells, V1 neurons supported better performance in the sample identification task, whereas V2 neurons exhibited better performance in texture classification. Relative to V1, the responses of V2 show greater selectivity and tolerance for the representation of texture statistics.
PMCID:4896726
PMID: 27173899
ISSN: 1091-6490
CID: 2124662

Near-optimal integration of orientation information across saccades

Ganmor, Elad; Landy, Michael S; Simoncelli, Eero P
We perceive a stable environment despite the fact that visual information is essentially acquired in a sequence of snapshots separated by saccadic eye movements. The resolution of these snapshots varies-high in the fovea and lower in the periphery-and thus the formation of a stable percept presumably relies on the fusion of information acquired at different resolutions. To test if, and to what extent, foveal and peripheral information are integrated, we examined human orientation-discrimination performance across saccadic eye movements. We found that humans perform best when an oriented target is visible both before (peripherally) and after a saccade (foveally), suggesting that humans integrate the two views. Integration relied on eye movements, as we found no evidence of integration when the target was artificially moved during stationary viewing. Perturbation analysis revealed that humans combine the two views using a weighted sum, with weights assigned based on the relative precision of foveal and peripheral representations, as predicted by ideal observer models. However, our subjects displayed a systematic overweighting of the fovea, relative to the ideal observer, indicating that human integration across saccades is slightly suboptimal.
PMCID:5079706
PMID: 26650193
ISSN: 1534-7362
CID: 1930942

Origin and Function of Tuning Diversity in Macaque Visual Cortex

Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony
Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population.
PMCID:4786576
PMID: 26549331
ISSN: 1097-4199
CID: 1882662

A Convolutional Subunit Model for Neuronal Responses in Macaque V1

Vintch, Brett; Movshon, J Anthony; Simoncelli, Eero P
The response properties of neurons in the early stages of the visual system can be described using the rectified responses of a set of self-similar, spatially shifted linear filters. In macaque primary visual cortex (V1), simple cell responses can be captured with a single filter, whereas complex cells combine a set of filters, creating position invariance. These filters cannot be estimated using standard methods, such as spike-triggered averaging. Subspace methods like spike-triggered covariance can recover multiple filters but require substantial amounts of data, and recover an orthogonal basis for the subspace in which the filters reside, rather than the filters themselves. Here, we assume a linear-nonlinear-linear-nonlinear (LN-LN) cascade model in which the first LN stage consists of shifted ("convolutional") copies of a single filter, followed by a common instantaneous nonlinearity. We refer to these initial LN elements as the "subunits" of the receptive field, and we allow two independent sets of subunits, each with its own filter and nonlinearity. The second linear stage computes a weighted sum of the subunit responses and passes the result through a final instantaneous nonlinearity. We develop a procedure to directly fit this model to electrophysiological data. When fit to data from macaque V1, the subunit model significantly outperforms three alternatives in terms of cross-validated accuracy and efficiency, and provides a robust, biologically plausible account of receptive field structure for all cell types encountered in V1. SIGNIFICANCE STATEMENT: We present a new subunit model for neurons in primary visual cortex that significantly outperforms three alternative models in terms of cross-validated accuracy and efficiency, and provides a robust and biologically plausible account of the receptive field structure in these neurons across the full spectrum of response properties.
PMCID:4635132
PMID: 26538653
ISSN: 1529-2401
CID: 1882652

Attention stabilizes the shared gain of V4 populations

Rabinowitz, Neil C; Goris, Robbe L; Cohen, Marlene; Simoncelli, Eero
Responses of sensory neurons represent stimulus information, but are also influenced by internal state. For example, when monkeys direct their attention to a visual stimulus, the response gain of specific subsets of neurons in visual cortex changes. Here, we develop a functional model of population activity to investigate the structure of this effect. We fit the model to the spiking activity of bilateral neural populations in area V4, recorded while the animal performed a stimulus discrimination task under spatial attention. The model reveals four separate time-varying shared modulatory signals, the dominant two of which each target task-relevant neurons in one hemisphere. In attention-directed conditions, the associated shared modulatory signal decreases in variance. This finding provides an interpretable and parsimonious explanation for previous observations that attention reduces variability and noise correlations of sensory neurons. Finally, the recovered modulatory signals reflect previous reward, and are predictive of choice behavior.
PMCID:4758958
PMID: 26523390
ISSN: 2050-084x
CID: 1931202

Mapping nonlinear receptive field structure in primate retina at single cone resolution

Freeman, Jeremy; Field, Greg D; Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam; Simoncelli, Eero P; Chichilnisky, E J
The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits.
PMCID:4623615
PMID: 26517879
ISSN: 2050-084x
CID: 1931212

Geometrical and statistical properties of vision models obtained via MAximum Differentiation

Chapter by: Malo, Jesus; Simoncelliy, Eero P.
in: Proceedings of SPIE - The International Society for Optical Engineering by
[S.l.] : SPIEspie@spie.org, 2015
pp. ?-?
ISBN: 9781628414844
CID: 3830172

Efficient sensory encoding and bayesian inference with heterogeneous neural populations

Ganguli, Deep; Simoncelli, Eero P
The efficient coding hypothesis posits that sensory systems maximize information transmitted to the brain about the environment. We develop a precise and testable form of this hypothesis in the context of encoding a sensory variable with a population of noisy neurons, each characterized by a tuning curve. We parameterize the population with two continuous functions that control the density and amplitude of the tuning curves, assuming that the tuning widths vary inversely with the cell density. This parameterization allows us to solve, in closed form, for the information-maximizing allocation of tuning curves as a function of the prior probability distribution of sensory variables. For the optimal population, the cell density is proportional to the prior, such that more cells with narrower tuning are allocated to encode higher-probability stimuli and that each cell transmits an equal portion of the stimulus probability mass. We also compute the stimulus discrimination capabilities of a perceptual system that relies on this neural representation and find that the best achievable discrimination thresholds are inversely proportional to the sensory prior. We examine how the prior information that is implicitly encoded in the tuning curves of the optimal population may be used for perceptual inference and derive a novel decoder, the Bayesian population vector, that closely approximates a Bayesian least-squares estimator that has explicit access to the prior. Finally, we generalize these results to sigmoidal tuning curves, correlated neural variability, and a broader class of objective functions. These results provide a principled embedding of sensory prior information in neural populations and yield predictions that are readily testable with environmental, physiological, and perceptual data.
PMCID:4167880
PMID: 25058702
ISSN: 0899-7667
CID: 1268252

Partitioning neuronal variability

Goris, Robbe L T; Movshon, J Anthony; Simoncelli, Eero P
Responses of sensory neurons differ across repeated measurements. This variability is usually treated as stochasticity arising within neurons or neural circuits. However, some portion of the variability arises from fluctuations in excitability due to factors that are not purely sensory, such as arousal, attention and adaptation. To isolate these fluctuations, we developed a model in which spikes are generated by a Poisson process whose rate is the product of a drive that is sensory in origin and a gain summarizing stimulus-independent modulatory influences on excitability. This model provides an accurate account of response distributions of visual neurons in macaque lateral geniculate nucleus and cortical areas V1, V2 and MT, revealing that variability originates in large part from excitability fluctuations that are correlated over time and between neurons, and that increase in strength along the visual pathway. The model provides a parsimonious explanation for observed systematic dependencies of response variability and covariability on firing rate.
PMCID:4135707
PMID: 24777419
ISSN: 1097-6256
CID: 930622

A unified framework and method for automatic neural spike identification

Ekanadham, Chaitanya; Tranchina, Daniel; Simoncelli, Eero P
Automatic identification of action potentials from one or more extracellular electrode recordings is generally achieved by clustering similar segments of the measured voltage trace, a method that fails (or requires substantial human intervention) for spikes whose waveforms overlap. We formulate the problem in terms of a simple probabilistic model, and develop a unified method to identify spike waveforms along with continuous-valued estimates of their arrival times, even in the presence of overlap. Specifically, we make use of a recent algorithm known as Continuous Basis Pursuit for solving linear inverse problems in which the component occurrences are sparse and are at arbitrary continuous-valued times. We demonstrate significant performance improvements over current state-of-the-art clustering methods for four simulated and two real data sets with ground truth, each of which has previously been used as a benchmark for spike sorting. In addition, performance of our method on each of these data sets surpasses that of the best possible clustering method (i.e., one that is specifically optimized to minimize errors on each data set). Finally, the algorithm is almost completely automated, with a computational cost that scales well for multi-electrode arrays.
PMCID:4075282
PMID: 24184059
ISSN: 0165-0270
CID: 703252