Try a new search

Format these results:

Searched for:

person:falcha01

in-biosketch:yes

Total Results:

20


Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex

Markov, Nikola T; Vezoli, Julien; Chameau, Pascal; Falchier, Arnaud; Quilodran, René; Huissoud, Cyril; Lamy, Camille; Misery, Pierre; Giroud, Pascale; Ullman, Shimon; Barone, Pascal; Dehay, Colette; Knoblauch, Kenneth; Kennedy, Henry
The laminar location of the cell bodies and terminals of interareal connections determines the hierarchical structural organization of the cortex and has been intensively studied. However, we still have only a rudimentary understanding of the connectional principles of feedforward (FF) and feedback (FB) pathways. Quantitative analysis of retrograde tracers was used to extend the notion that the laminar distribution of neurons interconnecting visual areas provides an index of hierarchical distance (percentage of supragranular labeled neurons [SLN]). We show that: 1) SLN values constrain models of cortical hierarchy, revealing previously unsuspected areal relations; 2) SLN reflects the operation of a combinatorial distance rule acting differentially on sets of connections between areas; 3) Supragranular layers contain highly segregated bottom-up and top-down streams, both of which exhibit point-to-point connectivity. This contrasts with the infragranular layers, which contain diffuse bottom-up and top-down streams; 4) Cell filling of the parent neurons of FF and FB pathways provides further evidence of compartmentalization; 5) FF pathways have higher weights, cross fewer hierarchical levels, and are less numerous than FB pathways. Taken together, the present results suggest that cortical hierarchies are built from supra- and infragranular counterstreams. This compartmentalized dual counterstream organization allows point-to-point connectivity in both bottom-up and top-down directions.
PMCID:4255240
PMID: 23983048
ISSN: 1096-9861
CID: 4087252

Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model

Hackett, Troy A; de la Mothe, Lisa A; Camalier, Corrie R; Falchier, Arnaud; Lakatos, Peter; Kajikawa, Yoshinao; Schroeder, Charles E
Our working model of the primate auditory cortex recognizes three major regions (core, belt, parabelt), subdivided into thirteen areas. The connections between areas are topographically ordered in a manner consistent with information flow along two major anatomical axes: core-belt-parabelt and caudal-rostral. Remarkably, most of the connections supporting this model were revealed using retrograde tracing techniques. Little is known about laminar circuitry, as anterograde tracing of axon terminations has rarely been used. The purpose of the present study was to examine the laminar projections of three areas of auditory cortex, pursuant to analysis of all areas. The selected areas were: middle lateral belt (ML); caudomedial belt (CM); and caudal parabelt (CPB). Injections of anterograde tracers yielded data consistent with major features of our model, and also new findings that compel modifications. Results supporting the model were: (1) feedforward projection from ML and CM terminated in CPB; (2) feedforward projections from ML and CPB terminated in rostral areas of the belt and parabelt; and (3) feedback projections typified inputs to the core region from belt and parabelt. At odds with the model was the convergence of feedforward inputs into rostral medial belt from ML and CPB. This was unexpected since CPB is at a higher stage of the processing hierarchy, with mainly feedback projections to all other belt areas. Lastly, extending the model, feedforward projections from CM, ML, and CPB overlapped in the temporal parietal occipital area (TPO) in the superior temporal sulcus, indicating significant auditory influence on sensory processing in this region. The combined results refine our working model and highlight the need to complete studies of the laminar inputs to all areas of auditory cortex. Their documentation is essential for developing informed hypotheses about the neurophysiological influences of inputs to each layer and area.
PMCID:4001064
PMID: 24795550
ISSN: 1662-4548
CID: 4087262

The spectrotemporal filter mechanism of auditory selective attention

Lakatos, Peter; Musacchia, Gabriella; O'Connel, Monica N; Falchier, Arnaud Y; Javitt, Daniel C; Schroeder, Charles E
Although we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, although the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli.
PMCID:3583016
PMID: 23439126
ISSN: 0896-6273
CID: 756492

Audiovisual Integration in Nonhuman Primates: A Window into the Anatomy and Physiology of Cognition

Chapter by: Murray, Micah M.; Wallace, Mark T.; Kajikawa, Yoshinao; Falchier, Arnaud; Musacchia, Gabriella; Lakatos, Peter; Schroeder, Charles E.
in: The Neural Bases of Multisensory Processes by Murray, Micah M.; Wallace, Mark T. (Eds)
Boca Raton, FL : CRC Press, 2012
pp. ?-?
ISBN: 9781439812174
CID: 4087352

Dual mechanism of neuronal ensemble inhibition in primary auditory cortex

O'Connell, Monica N; Falchier, Arnaud; McGinnis, Tammy; Schroeder, Charles E; Lakatos, Peter
Inhibition plays an essential role in shaping and refining the brain's representation of sensory stimulus attributes. In primary auditory cortex (A1), so-called "sideband" inhibition helps to sharpen the tuning of local neuronal responses. Several distinct types of anatomical circuitry could underlie sideband inhibition, including direct thalamocortical (TC) afferents, as well as indirect intracortical mechanisms. The goal of the present study was to characterize sideband inhibition in A1 and to determine its mechanism by analyzing laminar profiles of neuronal ensemble activity. Our results indicate that both lemniscal and nonlemniscal TC afferents play a role in inhibitory responses via feedforward inhibition and oscillatory phase reset, respectively. We propose that the dynamic modulation of excitability in A1 due to the phase reset of ongoing oscillations may alter the tuning of local neuronal ensembles and can be regarded as a flexible overlay on the more obligatory system of lemniscal feedforward type responses.
PMCID:3052772
PMID: 21338888
ISSN: 0896-6273
CID: 757102

Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey

Falchier, Arnaud; Schroeder, Charles E; Hackett, Troy A; Lakatos, Peter; Nascimento-Silva, Sheila; Ulbert, Istvan; Karmos, Gyorgi; Smiley, John F
Studies in humans and monkeys report widespread multisensory interactions at or near primary visual and auditory areas of neocortex. The range and scale of these effects has prompted increased interest in interconnectivity between the putatively "unisensory" cortices at lower hierarchical levels. Recent anatomical tract-tracing studies have revealed direct projections from auditory cortex to primary visual area (V1) and secondary visual area (V2) that could serve as a substrate for auditory influences over low-level visual processing. To better understand the significance of these connections, we looked for reciprocal projections from visual cortex to caudal auditory cortical areas in macaque monkeys. We found direct projections from area prostriata and the peripheral visual representations of area V2. Projections were more abundant after injections of temporoparietal area and caudal parabelt than after injections of caudal medial belt and the contiguous areas near the fundus of the lateral sulcus. Only one injection was confined to primary auditory cortex (area A1) and did not demonstrate visual connections. The projections from visual areas originated mainly from infragranular layers, suggestive of a "feedback"-type projection. The selective localization of these connections to peripheral visual areas and caudal auditory cortex suggests that they are involved in spatial localization.
PMCID:2882821
PMID: 19875677
ISSN: 1047-3211
CID: 388712

Multisensory connections of monkey auditory cerebral cortex

Smiley, John F; Falchier, Arnaud
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources.
PMCID:2788085
PMID: 19619628
ISSN: 0378-5955
CID: 388722

Quantitative analysis of connectivity in the visual cortex: extracting function from structure

Vezoli, Julien; Falchier, Arnaud; Jouve, Bertrand; Knoblauch, Kenneth; Young, Malcolm; Kennedy, Henry
It is generally agreed that information flow through the cortex is constrained by a hierarchical architecture. Lack of precise data on areal connectivity leads to indeterminacy of existing models. The authors introduce two quantitative parameters (SLN and FLN) that hold the promise of resolving such indeterminacy. In the visual system, using a very incomplete database, provisional hierarchies are in line with the recent proposal of higher functions of area V1 and suggest a hitherto unsuspected central function of the frontal eye field.
PMID: 15359013
ISSN: 1073-8584
CID: 4087222

Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness

Clavagnier, Simon; Falchier, Arnaud; Kennedy, Henry
It is generally agreed that information flow through the cortex is constrained by a hierarchical architecture. Recent experimental evidence suggests that projections descending the hierarchy and targeting the primary visual cortex (area V1) may play an essential role in perceptual processes. We have, therefore, reexamined feedback projections to area V1, using retrograde tracer injections in this area In addition to well-known areas, quantification of labeling in higher cortical areas reveals a number of hitherto unknown long-distance feedback connections originating from auditory (A1), multisensory (STP) cortices, but also from a perirhinal area (36). These feedback projections from advanced cortical stations, a global feature shared by areas that belong to the ventral visual stream, could play an important role in early multisensory integration and spatial awareness and could provide the physical substrate for the involvement of area V1 in visual consciousness.
PMID: 15460918
ISSN: 1530-7026
CID: 4087232

Anatomical evidence of multimodal integration in primate striate cortex

Falchier, Arnaud; Clavagnier, Simon; Barone, Pascal; Kennedy, Henry
The primary visual cortex (area 17 or V1) is not thought to receive input from nonvisual extrastriate cortical areas. However, this has yet to be shown to be the case using sensitive tracers in the part of area 17 subserving the peripheral visual field. Here we show using retrograde tracers that peripheral area 17 subserving the visual field at an eccentricity of 10-20 degrees receives projections from the core and parabelt areas of the auditory cortex as well as from the polysensory area of the temporal lobe (STP). The relative strength of these projections was calculated for each injection by computing the proportions of retrogradely labeled neurons located in the auditory and STP areas with respect to number of labeled neurons constituting the established projection from the superior temporal sulci (STS) motion complex (middle temporal area, medial superior temporal, fundus of the superior temporal area). In peripheral area V1 the projection from auditory cortex corresponds to 9.5% of that of the STS motion complex and STP to 35% of that from the STS motion complex. Compared to peripheral area 17, central and paracentral area 17 showed considerably weaker inputs from auditory cortex (0.2-0.8%) but slightly more from STP cortex (3.5-6.1%). The present results show that the connectivity of area 17 is eccentricity dependent. Direct projections from auditory and STP cortex to peripheral area 17 have important consequences for higher visual functions of area 17, including multimodal integration at early stages of the visual cortical pathway.
PMID: 12097528
ISSN: 1529-2401
CID: 4087212