Try a new search

Format these results:

Searched for:

person:ganw01

Total Results:

107


Large-scale femtosecond holography for near simultaneous optogenetic neural modulation

Sun, Shiyi; Zhang, Guangle; Cheng, Zongyue; Gan, Wenbiao; Cui, Meng
For better understanding of brain functions, optogenetic neural modulation has been widely employed in neural science research. For deep tissue in vivo applications, large-scale two-photon based near simultaneous 3D laser excitation is needed. Although 3D holographic laser excitation is nowadays common practice, the inherent short coherence length of the commonly used femtosecond pulses fundamentally restricts the achievable field-of-view. Here we report a technique for near simultaneous large-scale femtosecond holographic 3D excitation. Specifically, we achieved two-photon excitation over 1.3 mm field-of-view within 1.3 milliseconds, which is sufficiently fast even for spike timing recording. The method is scalable and compatible with the commonly used two-photon sources and imaging systems in neuroscience research.
PMID: 31684439
ISSN: 1094-4087
CID: 4172272

Long-term imaging of dorsal root ganglia in awake behaving mice

Chen, Chao; Zhang, Jinhui; Sun, Linlin; Zhang, Yiling; Gan, Wen-Biao; Tang, Peifu; Yang, Guang
The dorsal root ganglia (DRG) contain the somas of first-order sensory neurons critical for somatosensation. Due to technical difficulties, DRG neuronal activity in awake behaving animals remains unknown. Here, we develop a method for imaging DRG at cellular and subcellular resolution over weeks in awake mice. The method involves the installation of an intervertebral fusion mount to reduce spinal movement, and the implantation of a vertebral glass window without interfering animals' motor and sensory functions. In vivo two-photon calcium imaging shows that DRG neuronal activity is higher in awake than anesthetized animals. Immediately after plantar formalin injection, DRG neuronal activity increases substantially and this activity upsurge correlates with animals' phasic pain behavior. Repeated imaging of DRG over 5 weeks after formalin injection reveals persistent neuronal hyperactivity associated with ongoing pain. The method described here provides an important means for in vivo studies of DRG functions in sensory perception and disorders.
PMID: 31300648
ISSN: 2041-1723
CID: 3976962

Somatostatin-Expressing Interneurons Enable and Maintain Learning-Dependent Sequential Activation of Pyramidal Neurons

Adler, Avital; Zhao, Ruohe; Shin, Myung Eun; Yasuda, Ryohei; Gan, Wen-Biao
The activities of neuronal populations exhibit temporal sequences that are thought to mediate spatial navigation, cognitive processing, and motor actions. The mechanisms underlying the generation and maintenance of sequential neuronal activity remain unclear. We found that layer 2 and/or 3 pyramidal neurons (PNs) showed sequential activation in the mouse primary motor cortex during motor skill learning. Concomitantly, the activity of somatostatin (SST)-expressing interneurons increased and decreased in a task-specific manner. Activating SST interneurons during motor training, either directly or via inhibiting vasoactive-intestinal-peptide-expressing interneurons, prevented learning-induced sequential activities of PNs and behavioral improvement. Conversely, inactivating SST interneurons during the learning of a new motor task reversed sequential activities and behavioral improvement that occurred during a previous task. Furthermore, the control of SST interneurons over sequential activation of PNs required CaMKII-dependent synaptic plasticity. These findings indicate that SST interneurons enable and maintain synaptic plasticity-dependent sequential activation of PNs during motor skill learning.
PMID: 30792151
ISSN: 1097-4199
CID: 3688042

Fear conditioning and extinction induce opposing changes in dendritic spine remodeling and somatic activity of layer 5 pyramidal neurons in the mouse motor cortex

Xu, Zhiwei; Adler, Avital; Li, Hong; Pérez-Cuesta, Luis M; Lai, Baoling; Li, Wei; Gan, Wen-Biao
Multiple brain regions including the amygdala and prefrontal cortex are crucial for modulating fear conditioning and extinction. The primary motor cortex is known to participate in the planning, control, and execution of voluntary movements. Whether and how the primary motor cortex is involved in modulating freezing responses related to fear conditioning and extinction remains unclear. Here we show that inactivation of the mouse primary motor cortex impairs both the acquisition and extinction of freezing responses induced by auditory-cued fear conditioning. Fear conditioning significantly increases the elimination of dendritic spines on apical dendrites of layer 5 pyramidal neurons in the motor cortex. These eliminated spines are further apart from each other than expected from random distribution along dendrites. On the other hand, fear extinction causes the formation of new spines that are located near the site of spines eliminated previously after fear conditioning. We further show that fear conditioning decreases and fear extinction increases somatic activities of layer 5 pyramidal neurons in the motor cortex respectively. Taken together, these findings indicate fear conditioning and extinction induce opposing changes in synaptic connections and somatic activities of layer 5 pyramidal neurons in the primary motor cortex, a cortical region important for the acquisition and extinction of auditory-cued conditioned freezing responses.
PMID: 30874589
ISSN: 2045-2322
CID: 3733522

Fear extinction reverses dendritic spine formation induced by fear conditioning in the mouse auditory cortex

Lai, Cora Sau Wan; Adler, Avital; Gan, Wen-Biao
Fear conditioning-induced behavioral responses can be extinguished after fear extinction. While fear extinction is generally thought to be a form of new learning, several lines of evidence suggest that neuronal changes associated with fear conditioning could be reversed after fear extinction. To better understand how fear conditioning and extinction modify synaptic circuits, we examined changes of postsynaptic dendritic spines of layer V pyramidal neurons in the mouse auditory cortex over time using transcranial two-photon microscopy. We found that auditory-cued fear conditioning induced the formation of new dendritic spines within 2 days. The survived new spines induced by fear conditioning with one auditory cue were clustered within dendritic branch segments and spatially segregated from new spines induced by fear conditioning with a different auditory cue. Importantly, fear extinction preferentially caused the elimination of newly formed spines induced by fear conditioning in an auditory cue-specific manner. Furthermore, after fear extinction, fear reconditioning induced reformation of new dendritic spines in close proximity to the sites of new spine formation induced by previous fear conditioning. These results show that fear conditioning, extinction, and reconditioning induce cue- and location-specific dendritic spine remodeling in the auditory cortex. They also suggest that changes of synaptic connections induced by fear conditioning are reversed after fear extinction.
PMCID:6140524
PMID: 30150391
ISSN: 1091-6490
CID: 3277602

The Phosphodiesterase 9 inhibitor PF-04449613 promotes dendritic spine formation and performance improvement after motor learning

Lai, Baoling; Li, Miao; Hu, Wanling; Li, Wei; Gan, Wen-Biao
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two-photon microscopy to investigate the effect of a selective PDE9 inhibitor PF-04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF-04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF-04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF-04449613 treatment over 1-7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF-04449613 increases synaptic calcium activity and learning-dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
PMID: 30022611
ISSN: 1932-846x
CID: 3202222

Learning and sleep-dependent dendritic spine plasticity and maintenance [Meeting Abstract]

Gan, W
Dendritic spines are the postsynaptic sites of most excitatory synapses in the mammalian brain. In vivo imaging of dendritic spines in the mouse cerebral cortex indicates that spines are highly plastic during development and become remarkably stable in adulthood. In my presentation, I will discuss how learning experiences and subsequent sleep regulate the plasticity and maintenance of dendritic spines. Because dendritic spines are the key elements for information acquisition and retention, understanding how they are regulated by sleep in the living brain provides important insights into the functions of sleep in learning and memory
EMBASE:624032894
ISSN: 1365-2869
CID: 3330812

Neuropathic Pain Causes Pyramidal Neuronal Hyperactivity in the Anterior Cingulate Cortex

Zhao, Ruohe; Zhou, Hang; Huang, Lianyan; Xie, Zhongcong; Wang, Jing; Gan, Wen-Biao; Yang, Guang
The anterior cingulate cortex (ACC) is thought to be important for acute pain perception as well as the development of chronic pain after peripheral nerve injury. Nevertheless, how ACC neurons respond to sensory stimulation under chronic pain states is not well understood. Here, we used an in vivo two-photon imaging technique to monitor the activity of individual neurons in the ACC of awake, head restrained mice. Calcium imaging in the dorsal ACC revealed robust somatic activity in layer 5 (L5) pyramidal neurons in response to peripheral noxious stimuli, and the degree of evoked activity was correlated with the intensity of noxious stimulation. Furthermore, the activation of ACC neurons occurred bilaterally upon noxious stimulation to either contralateral or ipsilateral hind paws. Notably, with nerve injury-induced neuropathic pain in one limb, L5 pyramidal neurons in both sides of the ACC showed enhanced activity in the absence or presence of pain stimuli. These results reveal hyperactivity of L5 pyramidal neurons in the bilateral ACC during the development of neuropathic pain.
PMCID:5919951
PMID: 29731710
ISSN: 1662-5102
CID: 3084682

Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimer's disease

Bai, Yang; Li, Miao; Zhou, Yanmei; Ma, Lei; Qiao, Qian; Hu, Wanling; Li, Wei; Wills, Zachary Patrick; Gan, Wen-Biao
BACKGROUND: Alzheimer's disease (AD) is characterized by amyloid deposition, tangle formation as well as synapse loss. Synaptic abnormalities occur early in the pathogenesis of AD. Identifying early synaptic abnormalities and their underlying mechanisms is likely important for the prevention and treatment of AD. METHODS: We performed in vivo two-photon calcium imaging to examine the activities of somas, dendrites and dendritic spines of layer 2/3 pyramidal neurons in the primary motor cortex in the APPswe/PS1dE9 mouse model of AD and age-matched wild type control mice. We also performed calcium imaging to determine the effect of Abeta oligomers on dendritic calcium activity. In addition, structural and functional two-photon imaging were used to examine the link between abnormal dendritic calcium activity and changes in dendritic spine size in the AD mouse model. RESULTS: We found that somatic calcium activities of layer 2/3 neurons were significantly lower in the primary motor cortex of 3-month-old APPswe/PS1dE9 mice than in wild type mice during quiet resting, but not during running on a treadmill. Notably, a significantly larger fraction of apical dendrites of layer 2/3 pyramidal neurons showed calcium transients with abnormally long duration and high peak amplitudes during treadmill running in AD mice. Administration of Abeta oligomers into the brain of wild type mice also induced abnormal dendritic calcium transients during running. Furthermore, we found that the activity and size of dendritic spines were significantly reduced on dendritic branches with abnormally prolonged dendritic calcium transients in AD mice. CONCLUSION: Our findings show that abnormal dendritic calcium transients and synaptic depotentiation occur before amyloid plaque formation in the motor cortex of the APPswe/PS1dE9 mouse model of AD. Dendritic calcium transients with abnormally long durations and high amplitudes could be induced by soluble Abeta oligomers and contribute to synaptic deficits in the early pathogenesis of AD.
PMCID:5686812
PMID: 29137651
ISSN: 1750-1326
CID: 2784632

Activation of cortical somatostatin interneurons prevents the development of neuropathic pain

Cichon, Joseph; Blanck, Thomas J J; Gan, Wen-Biao; Yang, Guang
Neuropathic pain involves long-lasting modifications of pain pathways that result in abnormal cortical activity. How cortical circuits are altered and contribute to the intense sensation associated with allodynia is unclear. Here we report a persistent elevation of layer V pyramidal neuron activity in the somatosensory cortex of a mouse model of neuropathic pain. This enhanced pyramidal neuron activity was caused in part by increases of synaptic activity and NMDA-receptor-dependent calcium spikes in apical tuft dendrites. Furthermore, local inhibitory interneuron networks shifted their activity in favor of pyramidal neuron hyperactivity: somatostatin-expressing and parvalbumin-expressing inhibitory neurons reduced their activity, whereas vasoactive intestinal polypeptide-expressing interneurons increased their activity. Pharmacogenetic activation of somatostatin-expressing cells reduced pyramidal neuron hyperactivity and reversed mechanical allodynia. These findings reveal cortical circuit changes that arise during the development of neuropathic pain and identify the activation of specific cortical interneurons as therapeutic targets for chronic pain treatment.
PMCID:5559271
PMID: 28671692
ISSN: 1546-1726
CID: 2617162