Try a new search

Format these results:

Searched for:

person:garzom03

in-biosketch:yes

Total Results:

28


The role of the protein kinase A pathway in the response to alkaline pH stress in yeast

Casado, Carlos; González, Asier; Platara, Maria; Ruiz, Amparo; Ariño, Joaquín
Exposure of Saccharomyces cerevisiae to alkaline pH provokes a stress condition that generates a compensatory reaction. In the present study we examined a possible role for the PKA (protein kinase A) pathway in this response. Phenotypic analysis revealed that mutations that activate the PKA pathway (ira1 ira2, bcy1) tend to cause sensitivity to alkaline pH, whereas its deactivation enhances tolerance to this stress. We observed that alkalinization causes a transient decrease in cAMP, the main regulator of the pathway. Alkaline pH causes rapid nuclear localization of the PKA-regulated Msn2 transcription factor which, together with Msn4, mediates a general stress response by binding with STRE (stress response element) sequences in many promoters. Consequently, a synthetic STRE-LacZ reporter shows a rapid induction in response to alkaline stress. A msn2 msn4 mutant is sensitive to alkaline pH, and transcriptomic analysis reveals that after 10 min of alkaline stress, the expression of many induced genes (47%) depends, at least in part, on the presence of Msn2 and Msn4. Taken together, these results demonstrate that inhibition of the PKA pathway by alkaline pH represents a substantial part of the adaptive response to this kind of stress and that this response involves Msn2/Msn4-mediated genome expression remodelling. However, the relevance of attenuation of PKA in high pH tolerance is probably not restricted to regulation of Msn2 function.
PMCID:3253439
PMID: 21749328
ISSN: 1470-8728
CID: 4335442

Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase

Ruiz, Amparo; Xu, Xinjing; Carlson, Marian
The SNF1 protein kinase of Saccharomyces cerevisiae is a member of the SNF1/AMP-activated protein kinase family, which is essential for metabolic control, energy homeostasis, and stress responses in eukaryotes. SNF1 is activated in response to glucose limitation by phosphorylation of Thr210 on the activation loop of the catalytic subunit Snf1. The SNF1 β-subunit contains a glycogen-binding domain that has been implicated in glucose inhibition of Snf1 Thr210 phosphorylation. To assess the role of glycogen, we examined Snf1 phosphorylation in strains with altered glycogen metabolism. A reg1Δ mutant, lacking Reg1-Glc7 protein phosphatase 1, exhibits elevated glycogen accumulation and phosphorylation of Snf1 during growth on high levels of glucose. Unexpectedly, mutations that abolished glycogen synthesis also restored Thr210 dephosphorylation in glucose-grown reg1Δ cells, indicating that elevated glycogen synthesis contributes to activation of SNF1 and that another phosphatase acts on Snf1. We present evidence that Sit4, a type 2A-like protein phosphatase, contributes to dephosphorylation of Snf1 Thr210. Finally, evidence that the effects of glycogen are not mediated by binding to the β-subunit raises the possibility that elevated glycogen synthesis alters glucose metabolism and thereby reduces glucose signaling to the SNF1 pathway.
PMCID:3081026
PMID: 21464305
ISSN: 1091-6490
CID: 4335822

Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis

Ruiz, Amparo; González, Asier; Muñoz, Ivan; Serrano, Raquel; Abrie, J Albert; Strauss, Erick; Ariño, Joaquín
Unlike most other organisms, the essential five-step coenzyme A biosynthetic pathway has not been fully resolved in yeast. Specifically, the genes encoding the phosphopantothenoylcysteine decarboxylase (PPCDC) activity still remain unidentified. Sequence homology analyses suggest three candidates-Ykl088w, Hal3 and Vhs3-as putative PPCDC enzymes in Saccharomyces cerevisiae. Notably, Hal3 and Vhs3 have been characterized as negative regulatory subunits of the Ppz1 protein phosphatase. Here we show that YKL088w does not encode a third Ppz1 regulatory subunit, and that the essential roles of Ykl088w and the Hal3 and Vhs3 pair are complementary, cannot be interchanged and can be attributed to PPCDC-related functions. We demonstrate that while known eukaryotic PPCDCs are homotrimers, the active yeast enzyme is a heterotrimer that consists of Ykl088w and Hal3/Vhs3 monomers that separately provides two essential catalytic residues. Our results unveil Hal3 and Vhs3 as moonlighting proteins involved in both CoA biosynthesis and protein phosphatase regulation.
PMID: 19915539
ISSN: 1552-4469
CID: 4335752

Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1

González, Asier; Ruiz, Amparo; Casamayor, Antonio; Ariño, Joaquín
Yeast ptc1 mutants are rapamycin and caffeine sensitive, suggesting a functional connection between Ptc1 and the TOR pathway that is not shared by most members of the type 2C phosphatase family. Genome-wide profiling revealed that the ptc1 mutation largely attenuates the transcriptional response to rapamycin. The lack of Ptc1 significantly prevents the nuclear translocation of Gln3 and Msn2 transcription factors to the nucleus, as well as the dephosphorylation of the Npr1 kinase, in response to rapamycin. This could explain the observed decrease in both the basal and rapamycin-induced expression of several genes subjected to nitrogen catabolite repression (GAT1, MEP1, and GLN1) and stress response element (STRE)-driven promoters. Interestingly, this decrease is abolished in the absence of the Sit4 phosphatase. Epitasis analysis indicates that the mutation of SIT4 or TIP41, encoding a Tap42-interacting protein, abolishes the sensitivity of the ptc1 strain to rapamycin and caffeine. All of these results suggest that Ptc1 is required for normal TOR signaling, possibly by regulating a step upstream of Sit4 function. According to this hypothesis, we observe that the mutation of PTC1 drastically diminishes the rapamycin-induced interaction between Tap42 and Tip41, and this can be explained by lower-than-normal levels of Tip41 in ptc1 cells. Ptc1 is not necessary for the normal expression of the TIP41 gene; instead, its absence dramatically affects the stability of Tip41. The lack of Ptc1 partially abolishes the rapamycin-induced dephosphorylation of Tip41, which may further decrease Tap42 binding. Reduced Tip41 levels contribute to the ptc1 phenotypes, although additional Ptc1 targets must exist. All of these results provide the first evidence showing that a type 2C protein phosphatase is required for the normal functioning of the TOR pathway.
PMCID:2682041
PMID: 19273591
ISSN: 1098-5549
CID: 4335742

Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway

Ruiz, Amparo; Serrano, Raquel; Ariño, Joaquín
Failure to use glucose as carbon source results in transcriptional activation of numerous genes whose expression is otherwise repressed. HXT2 encodes a yeast high affinity glucose transporter that is only expressed under conditions of glucose limitation. We show that HXT2 is rapidly and potently induced by environmental alkalinization, and this requires both the Snf1 and the calcineurin pathways. Regulation by calcineurin is mediated by the transcription factor Crz1, which rapidly translocates to the nucleus upon high pH stress, and acts through a previously unnoticed Crz1-binding element (calcineurin-dependent response element) in the HXT2 promoter (-507 GGGGCTG -501). We demonstrate that, in addition to HXT2, many other genes required for adaptation to glucose shortage, such as HXT7, MDH2, or ALD4, transcriptionally respond to calcium and high pH signaling through binding of Crz1 to their promoters. Therefore, calcineurin-dependent transcriptional regulation appears to be a common feature for many genes encoding carbohydrate-metabolizing enzymes. Remarkably, extracellular calcium allows growth of a snf1 mutant on low glucose in a calcineurin/Crz1-dependent manner, indicating that activation of calcineurin is sufficient to override a major deficiency in the glucose-repression pathway. We propose that alkalinization of the medium results in impaired glucose utilization and that activation of certain glucose-metabolizing genes by calcineurin contributes to yeast survival under this stress situation.
PMID: 18362157
ISSN: 0021-9258
CID: 4335722

Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system

Ruiz, Amparo; Ariño, Joaquín
PMCID:2168247
PMID: 17951516
ISSN: 1535-9786
CID: 4335702

Use of yeast genetic tools to define biological roles of novel protein phosphatases

Ariño, Joaquín; Casamayor, Antonio; Ruiz, Amparo; Muñoz, Ivan; Marquina, Maribel
Regulatable gene expression is a powerful genetic tool for analyzing the function of a given gene product. The use of tetracycline-regulatable promoters in yeast represents a substantial improvement over previously described methods for gene regulation. Here we show how this approach can be used to analyze the biological role of serine/threonine phosphatase catalytic or putative regulatory subunits by constructing chromosomal or plasmid-borne conditional mutants. This is particularly useful given the large variety of important biological processes performed by these of enzymes, often necessaries for cell survival, which makes in some cases infeasible the generation of null mutants.
PMID: 17200570
ISSN: 1064-3745
CID: 4335662

The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways

Platara, Maria; Ruiz, Amparo; Serrano, Raquel; Palomino, Aarón; Moreno, Fernando; Ariño, Joaquín
Adaptive response of the yeast Saccharomyces cerevisiae to environmental alkalinization results in remodeling of gene expression. A key target is the gene ENA1, encoding a Na(+)-ATPase, whose induction by alkaline pH has been shown to involve calcineurin and the Rim101/Nrg1 pathway. Previous functional analysis of the ENA1 promoter revealed a calcineurin-independent pH responsive region (ARR2, 83 nucleotides). We restrict here this response to a small (42 nucleotides) ARR2 5.-region, named MCIR (minimum calcineurin independent response), which contains a MIG element, able to bind Mig1,2 repressors. High pH-induced response driven from this region was largely abolished in snf1 cells and moderately reduced in a rim101 strain. Cells lacking Mig1 or Mig2 repressors had a near wild type response, but the double mutant presented a high level of expression upon alkaline stress. Deletion of NRG1 (but not of NRG2) resulted in increased expression. Induction from the MCIR region was marginal in a quadruple mutant lacking Nrg1,2 and Mig1,2 repressors. In vitro band shift experiments demonstrated binding of Nrg1 to the 5. end of the ARR2 region. Furthermore, we show that Nrg1 binds in vivo around the MCIR region under standard growth conditions, and that binding is largely abolished after high pH stress. Therefore, the calcineurin-independent response of the ENA1 gene is under the regulation of Rim101 (through Nrg1) and Snf1 (through Nrg1 and Mig2). Accordingly, induction by alkaline stress of the entire ENA1 promoter in a snf1 rim101 mutant in the presence of the calcineurin inhibitor FK506 is completely abolished. Thus, the transcriptional response to alkaline stress of the ENA1 gene integrates three different signaling pathways.
PMID: 17023428
ISSN: 0021-9258
CID: 4335652

Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptc1

González, Asier; Ruiz, Amparo; Serrano, Raquel; Ariño, Joaquín; Casamayor, Antonio
Type 2C protein phosphatases are encoded in Saccharomyces cerevisiae by several related genes (PTC1-5 and PTC7). To gain insight into the functions attributable to specific members of this gene family, we have investigated the transcriptional profiles of ptc1-5 mutants. Two main patterns were obtained as follows: the one generated by the ptc1 mutation and the one resulting from the lack of Ptc2-5. ptc4 and ptc5 profiles were quite similar, whereas that of ptc2 was less related to this group. Mutation of PTC1 resulted in increased expression of numerous genes that are also induced by cell wall damage, such as YKL161c, SED1, or CRH1, as well as in higher amounts of active Slt2 mitogen-activated protein kinase, indicating that lack of the phosphatase activates the cell wall integrity pathway. ptc1 cells were even more sensitive than slt2 mutants to a number of cell wall-damaging agents, and both mutations had additive effects. The sensitivity of ptc1 cells was not dependent on Hog1. Besides these phenotypes, we observed that calcineurin was hyperactivated in ptc1 cells, which were also highly sensitive to calcium ions, heavy metals, and alkaline pH, and exhibited a random haploid budding pattern. Remarkably, many of these traits are found in certain mutants with impaired vacuolar function. As ptc1 cells also display fragmented vacuoles, we hypothesized that lack of Ptc1 would primarily cause vacuolar malfunction, from which other phenotypes would derive. In agreement with this scenario, overexpression of VPS73, a gene of unknown function involved in vacuolar protein sorting, largely rescues not only vacuolar fragmentation but also sensitivity to cell wall damage, high calcium, alkaline pH, as well as other ptc1-specific phenotypes.
PMID: 16973600
ISSN: 0021-9258
CID: 4335642

Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae

Ruiz, Amparo; González, Asier; García-Salcedo, Raúl; Ramos, José; Ariño, Joaquín
Protein phosphatases 2C are a family of conserved enzymes involved in many aspects of the cell biology. We reported that, in the yeast Saccharomyces cerevisiae, overexpression of the Ptc3p isoform resulted in increased lithium tolerance in the hypersensitive hal3 background. We have found that the tolerance induced by PTC3 overexpression is also observed in wild-type cells and that this is most probably the result of increased expression of the ENA1 Na(+)-ATPase mediated by the Hog1 MAP kinase pathway. This effect does not require a catalytically active protein. Surprisingly, deletion of PTC3 (similarly to that of PTC2, PTC4 or PTC5) does not confer a lithium-sensitive phenotype, but mutation of PTC1 does. Lack of PTC1 in an ena1-4 background did not result in additive lithium sensitivity and the ptc1 mutant showed a decreased expression of the ENA1 gene in cells stressed with LiCl. In agreement, under these conditions, the ptc1 mutant was less effective in extruding Li(+) and accumulated higher concentrations of this cation. Deletion of PTC1 in a hal3 background did not exacerbate the halosensitive phenotype of the hal3 strain. In addition, induction from the ENA1 promoter under LiCl stress decreased similarly (50%) in hal3, ptc1 and ptc1 hal3 mutants. Finally, mutation of PTC1 virtually abolishes the increased tolerance to toxic cations provided by overexpression of Hal3p. These results indicate that Ptc1p modulates the function of Ena1p by regulating the Hal3/Ppz1,2 pathway. In conclusion, overexpression of PTC3 and lack of PTC1 affect lithium tolerance in yeast, although through different mechanisms.
PMID: 16956380
ISSN: 0950-382x
CID: 4335632