Try a new search

Format these results:

Searched for:

person:ghisoj01

in-biosketch:yes

Total Results:

332


The presubiculum is preserved from neurodegenerative changes in Alzheimer's disease

Murray, Christina E; Gami-Patel, Priya; Gkanatsiou, Eleni; Brinkmalm, Gunnar; Portelius, Erik; Wirths, Oliver; Heywood, Wendy; Blennow, Kaj; Ghiso, Jorge; Holton, Janice L; Mills, Kevin; Zetterberg, Henrik; Revesz, Tamas; Lashley, Tammaryn
In the majority of affected brain regions the pathological hallmarks of Alzheimer's disease (AD) are β-amyloid (Aβ) deposits in the form of diffuse and neuritic plaques, tau pathology in the form of neurofibrillary tangles, neuropil threads and plaque-associated abnormal neurites in combination with an inflammatory response. However, the anatomical area of the presubiculum, is characterised by the presence of a single large evenly distributed 'lake-like' Aβ deposit with minimal tau deposition or accumulation of inflammatory markers. Post-mortem brain samples from sporadic AD (SAD) and familial AD (FAD) and two hereditary cerebral amyloid diseases, familial British dementia (FBD) and familial Danish dementia (FDD) were used to compare the morphology of the extracellular proteins deposited in the presubiculum compared to the entorhinal cortex. The level of tau pathology and the extent of microglial activation were quantitated in the two brain regions in SAD and FAD. Frozen tissue was used to investigate the Aβ species and proteomic differences between the two regions. Consistent with our previous investigations of FBD and FDD cases we were able to establish that the 'lake-like' pre-amyloid deposits of the presubiculum were not a unique feature of AD but they also found two non-Aβ amyloidosis. Comparing the presubiculum to the entorhinal cortex the number of neurofibrillary tangles and tau load were significantly reduced; there was a reduction in microglial activation; there were differences in the Aβ profiles and the investigation of the whole proteome showed significant changes in different protein pathways. In summary, understanding why the presubiculum has a different morphological appearance, biochemical and proteomic makeup compared to surrounding brain regions severely affected by neurodegeneration could lead us to understanding protective mechanisms in neurodegenerative diseases.
PMCID:6053705
PMID: 30029687
ISSN: 2051-5960
CID: 4156272

Abeta truncated species: Implications for brain clearance mechanisms and amyloid plaque deposition

Cabrera, Erwin; Mathews, Paul; Mezhericher, Emiliya; Beach, Thomas G; Deng, Jingjing; Neubert, Thomas A; Rostagno, Agueda; Ghiso, Jorge
Extensive parenchymal and vascular Abeta deposits are pathological hallmarks of Alzheimer's disease (AD). Besides classic full-length peptides, biochemical analyses of brain deposits have revealed high degree of Abeta heterogeneity likely resulting from the action of multiple proteolytic enzymes. In spite of the numerous studies focusing in Abeta, the relevance of N- and C-terminal truncated species for AD pathogenesis remains largely understudied. In the present work, using novel antibodies specifically recognizing Abeta species N-terminally truncated at position 4 or C-terminally truncated at position 34, we provide a clear assessment of the differential topographic localization of these species in AD brains and transgenic models. Based on their distinct solubility, brain N- and C-terminal truncated species were extracted by differential fractionation and identified via immunoprecipitation coupled to mass spectrometry analysis. Biochemical/biophysical studies with synthetic homologues further confirmed the different solubility properties and contrasting fibrillogenic characteristics of the truncated species composing the brain Abeta peptidome. Abeta C-terminal degradation leads to the production of more soluble fragments likely to be more easily eliminated from the brain. On the contrary, N-terminal truncation at position 4 favors the formation of poorly soluble, aggregation prone peptides with high amyloidogenic propensity and the potential to exacerbate the fibrillar deposits, self-perpetuating the amyloidogenic loop. Detailed assessment of the molecular diversity of Abeta species composing interstitial fluid and amyloid deposits at different disease stages, as well as the evaluation of the truncation profile during various pharmacologic approaches will provide a comprehensive understanding of the still undefined contribution of Abeta truncations to the disease pathogenesis and their potential as novel therapeutic targets.
PMCID:5875988
PMID: 28711595
ISSN: 0006-3002
CID: 2640342

Unveiling Brain Aβ Heterogeneity Through Targeted Proteomic Analysis

Rostagno, Agueda; Neubert, Thomas A; Ghiso, Jorge
Amyloid β (Aβ) is the major constituent of the brain deposits found in parenchymal plaques and cerebral blood vessels of patients with Alzheimer's disease (AD). Besides classic full-length peptides, biochemical analyses of brain deposits have revealed high degree of Aβ heterogeneity likely resulting from the action of multiple proteolytic enzymes. This chapter describes a sequential extraction protocol allowing the differential fractionation of soluble and deposited Aβ species taking advantage of their differential solubility properties. Soluble Aβ is extracted by water-based buffers like phosphate-buffered saline-PBS-whereas pre-fibrillar and fibrillar deposits, usually poorly soluble in PBS, are extractable in detergent containing solutions or more stringent conditions as formic acid. The extraction procedure is followed by the biochemical identification of the extracted Aβ species using Western blot and a targeted proteomic analysis which combines immunoprecipitation with MALDI-ToF mass spectrometry. This approach revealed the presence of numerous C- and N-terminal truncated Aβ species in addition to Aβ1-40/42. Notably, the more soluble C-terminal cleaved fragments constitute a main part of PBS homogenates. On the contrary, N-terminal truncated species typically require more stringent conditions for the extraction in agreement with their lower solubility and enhanced aggregability. Detailed assessment of the molecular diversity of Aβ species composing interstitial fluid and amyloid deposits at different disease stages, as well as the evaluation of the truncation profile during various pharmacologic approaches will provide a comprehensive understanding of the still undefined contribution of Aβ truncations to AD pathogenesis and their potential as novel therapeutic targets.
PMID: 29886525
ISSN: 1940-6029
CID: 3154882

Protein folding disorders of the central nervous system

Ghiso, Jorge; Rostagno, Agueda
2018
Extent: xix, 313 p. ; 24 cm
ISBN: 9813222956
CID: 4158962

Misfolding, aggregation, and amyloid formation : the dark side of proteins

Chapter by: Rostagno, Agueda; Ghiso, Jorge
in: Protein folding disorders of the central nervous system by Ghiso, Jorge; Rostagno, Agueda (Eds)
2018
pp. 1-32
ISBN: 9813222956
CID: 4158972

Proteomic Analysis Shows Constitutive Secretion of MIF and p53-associated Activity of COX-2-/- Lung Fibroblasts

Dave, Mandar; Islam, Abul B M M K; Jensen, Roderick V; Rostagno, Agueda; Ghiso, Jorge; Amin, Ashok R
The differential expression of two closelyassociated cyclooxygenase isozymes, COX-1 and COX-2, exhibited functions beyond eicosanoid metabolism. We hypothesized that COX-1 or COX-2 knockout lung fibroblasts may display altered protein profiles which may allow us to further differentiate the functional roles of these isozymes at the molecular level. Proteomic analysis shows constitutive production of macrophage migration inhibitory factor (MIF) in lung fibroblasts derived from COX-2-/- but not wild-type (WT) or COX-1-/- mice. MIF was spontaneously released in high levels into the extracellular milieu of COX2-/- fibroblasts seemingly from the preformed intracellular stores, with no change in the basal gene expression of MIF. The secretion and regulation of MIF in COX-2-/- was "prostaglandin-independent." GO analysis showed that concurrent with upregulation of MIF, there is a significant surge in expression of genes related to fibroblast growth, FK506 binding proteins, and isomerase activity in COX-2-/- cells. Furthermore, COX-2-/- fibroblasts also exhibit a significant increase in transcriptional activity of various regulators, antagonists, and co-modulators of p53, as well as in the expression of oncogenes and related transcripts. Integrative Oncogenomics Cancer Browser (IntroGen) analysis shows downregulation of COX-2 and amplification of MIF and/or p53 activity during development of glioblastomas, ependymoma, and colon adenomas. These data indicate the functional role of the MIF-COX-p53 axis in inflammation and cancer at the genomic and proteomic levels in COX-2-ablated cells. This systematic analysis not only shows the proinflammatory state but also unveils a molecular signature of a pro-oncogenic state of COX-1 in COX-2 ablated cells.
PMCID:5828655
PMID: 29247872
ISSN: 2210-3244
CID: 2898662

N-truncated Abeta4-x peptides in sporadic Alzheimer's disease cases and transgenic Alzheimer mouse models

Wirths, Oliver; Walter, Susanne; Kraus, Inga; Klafki, Hans W; Stazi, Martina; Oberstein, Timo J; Ghiso, Jorge; Wiltfang, Jens; Bayer, Thomas A; Weggen, Sascha
BACKGROUND: The deposition of neurotoxic amyloid-beta (Abeta) peptides in plaques in the brain parenchyma and in cerebral blood vessels is considered to be a key event in Alzheimer's disease (AD) pathogenesis. Although the presence and impact of full-length Abeta peptides such as Abeta1-40 and Abeta1-42 have been analyzed extensively, the deposition of N-terminally truncated Abeta peptide species has received much less attention, largely because of the lack of specific antibodies. METHODS: This paper describes the generation and characterization of novel antibodies selective for Abeta4-x peptides and provides immunohistochemical evidence of Abeta4-x in the human brain and its distribution in the APP/PS1KI and 5XFAD transgenic mouse models. RESULTS: The Abeta4-x staining pattern was restricted mainly to amyloid plaque cores and cerebral amyloid angiopathy in AD and Down syndrome cases and in both AD mouse models. In contrast, diffuse amyloid deposits were largely negative for Abeta4-x immunoreactivity. No overt intraneuronal staining was observed. CONCLUSIONS: The findings of this study are consistent with previous reports demonstrating a high aggregation propensity of Abeta4-x peptides and suggest an important role of these N-truncated Abeta species in the process of amyloidogenesis and plaque core formation.
PMCID:5628465
PMID: 28978359
ISSN: 1758-9193
CID: 2719602

Amyloid beta oligomerization negatively influences brain clearance mechanisms [Meeting Abstract]

Rostagno, A; Giannoni, P; McIntee, F; Cabrera, E; Neubert, T; Ghiso, J
Aims Several lines of investigation support the notion that synaptic pathology, one of the strongest correlates to cognitive impairment, is related to progressive accumulation of neurotoxic amyloid beta (Abeta) oligomers. Since the process of oligomerization/fibrillization is concentration-dependent, it is highly reliant on the homeostatic mechanisms that regulate the steady state levels of Abeta influencing the delicate balance between rate of synthesis, dynamics of aggregation and clearance kinetics. Emerging new data suggest that reduced Abeta clearance, particularly in the aging brain, plays a critical role in the process of amyloid formation and AD pathogenesis. Method We have used a combination of stereotaxic injection into the hippocampal region of C57BL/6 wild-type mice with biochemical and mass spectrometric analyses of CSF to evaluate the brain clearance and catabolism of well-defined monomeric and low molecular mass Abeta oligomeric assemblies. Results Abeta physiologic removal from the brain is extremely fast, involves local proteolytic degradation with generation of heterogeneous C-terminally cleaved proteolytic products, and is negatively influenced by oligomerization. Immunofluorescence confocal microscopy studies provide insight into the cellular pathways involved in the brain removal and cellular uptake of Abeta. Clearance from brain interstitial fluid follows local and systemic paths; in addition to the BBB, local enzymatic degradation and transport through the choroid plexus into the CSF play significant roles. Conclusion Our studies highlight the diverse factors influencing brain clearance and the participation of various routes of elimination opening up new research opportunities for the understanding of altered mechanisms triggering AD pathology and for the potential design of combined therapeutic strategies
EMBASE:615511586
ISSN: 1660-2862
CID: 2553652

Amyloid beta catabolism: A balancing act between effective brain clearance and the process of amyloidogenesis [Meeting Abstract]

Ghiso, J; Cabrera, E; Mathews, P; Rostagno, A
Aims Biochemical and proteomic analysis of brain deposits and biological fluids reveal a high degree of Abeta heterogeneity that goes far beyond the classical Abeta40/Abeta42 dichotomy, displaying numerous post-translational modifications and multiple truncations at both N- and C-terminal ends of the molecule likely reflecting local action of resident enzymes. In spite of innumerable studies focusing in Abeta, the relevance of N- and C-terminal truncated species in the mechanism of AD pathogenesis remains largely understudied. Method Abeta species in brain tissue extracts were identified via immunoprecipitation/mass spectrometry. Synthetic homologues of intact and truncated peptides were compared in their solubility properties, self-oligomerization propensity, and brain clearance characteristics. Novel antibodies recognizing specific N- and C-terminal truncations were employed to immunolabel amyloid deposits in AD brains and transgenic models. Intracerebral injections of monomeric and oligomeric radiolabeled homologues were used to assess their brain clearance characteristics. Results N- and C-terminal truncated fragments in brain homogenates exhibit differential fractionation characteristics and topographic localization. Water-soluble brain extracts were enriched in C-terminal fragments -resembling the CSF Abeta peptidome- whereas N-terminal truncations required formic acid for solubilization. Synthetic homologues confirmed the differences in solubility and revealed contrasting oligomerization/ fibrillization characteristics. Notably, oligomerization largely increased brain retention, a characteristic mostly evident in fragments truncated at Phe4, topographically abundant in the plaque cores. Conclusion Abeta degradation at the C-terminal-end generates fragments likely associated to catabolic/clearance mechanisms while truncations at the N-terminus favor oligomerization and brain retention, with the potential to exacerbate the process of amyloidogenesis
EMBASE:615511804
ISSN: 1660-2862
CID: 2553632

Comparative pathobiology of beta-amyloid and the unique susceptibility of humans to Alzheimer's disease

Rosen, Rebecca F; Tomidokoro, Yasushi; Farberg, Aaron S; Dooyema, Jeromy; Ciliax, Brian; Preuss, Todd M; Neubert, Thomas A; Ghiso, Jorge A; LeVine, Harry 3rd; Walker, Lary C
The misfolding and accumulation of the protein fragment beta-amyloid (Abeta) is an early and essential event in the pathogenesis of Alzheimer's disease (AD). Despite close biological similarities among primates, humans appear to be uniquely susceptible to the profound neurodegeneration and dementia that characterize AD, even though nonhuman primates deposit copious Abeta in senile plaques and cerebral amyloid-beta angiopathy as they grow old. Because the amino acid sequence of Abeta is identical in all primates studied to date, we asked whether differences in the properties of aggregated Abeta might underlie the vulnerability of humans and the resistance of other primates to AD. In a comparison of aged squirrel monkeys (Saimiri sciureus) and humans with AD, immunochemical and mass spectrometric analyses indicate that the populations of Abeta fragments are largely similar in the 2 species. In addition, Abeta-rich brain extracts from the brains of aged squirrel monkeys and AD patients similarly seed the deposition of Abeta in a transgenic mouse model. However, the epitope exposure of aggregated Abeta differs in sodium dodecyl sulfate-stable oligomeric Abeta from the 2 species. In addition, the high-affinity binding of 3H Pittsburgh Compound B to Abeta is significantly diminished in tissue extracts from squirrel monkeys compared with AD patients. These findings support the hypothesis that differences in the pathobiology of aggregated Abeta among primates are linked to post-translational attributes of the misfolded protein, such as molecular conformation and/or the involvement of species-specific cofactors.
PMCID:4913040
PMID: 27318146
ISSN: 1558-1497
CID: 2145402