Try a new search

Format these results:

Searched for:

person:giannc02

in-biosketch:yes

Total Results:

87


False Utopia of One Unifying Description of the Vulnerable Atherosclerotic Plaque: A Call for Recalibration That Appreciates the Diversity of Mechanisms Leading to Atherosclerotic Disease

Pasterkamp, Gerard; den Ruijter, Hester M; Giannarelli, Chiara
Atherosclerosis is a complex disease characterized by the formation of arterial plaques with a broad diversity of morphological phenotypic presentations. Researchers often apply one description of the vulnerable plaque as a gold standard in preclinical and clinical research that could be applied as a surrogate measure of a successful therapeutic intervention, despite the variability in lesion characteristics that may underly a thrombotic occlusion. The complex mechanistic interplay underlying progression of atherosclerotic disease is a consequence of the broad range of determinants such as sex, risk factors, hemodynamics, medications, and the genetic landscape. Currently, we are facing an overwhelming amount of data based on genetic, transcriptomic, proteomic, and metabolomic studies that all point to heterogeneous molecular profiles of atherosclerotic lesions that lead to a myocardial infarction or stroke. The observed molecular diversity implies that one unifying model cannot fully recapitulate the natural history of atherosclerosis. Despite emerging data obtained from -omics studies, a description of a natural history of atherosclerotic disease in which cell-specific expression of proteins or genes are included is still lacking. This also applies to the insights provided by genome-wide association studies. This review will critically discuss the dogma that the progression of atherosclerotic disease can be captured in one unifying natural history model of atherosclerosis.
PMID: 35139657
ISSN: 1524-4636
CID: 5176082

How Single-Cell Technologies Have Provided New Insights Into Atherosclerosis

Eberhardt, Natalia; Giannarelli, Chiara
The development of innovative single-cell technologies has allowed the high-dimensional transcriptomic and proteomic profiling of individual blood and tissue cells. Recent single-cell studies revealed a new cellular heterogeneity of atherosclerotic plaque tissue and allowed a better understanding of distinct immune functional states in the context of atherosclerosis. In this brief review, we describe how single-cell technologies have shed a new light on the cellular composition of atherosclerotic plaques, and their response to diet perturbations or genetic manipulation in mouse models of atherosclerosis. We discuss how single-cell RNA sequencing, cellular indexing of transcriptomes and epitopes by sequencing, transposase-accessible chromatin with high-throughput sequencing, and cytometry by time-of-flight platforms have empowered the identification of discrete immune, endothelial, and smooth muscle cells alterations in atherosclerosis progression and regression. Finally, we review how single-cell approaches have allowed mapping the cellular and molecular composition of human atherosclerotic plaques and the discovery of new immune alterations in plaques from patients with stroke.
PMID: 35109673
ISSN: 1524-4636
CID: 5153632

Immune cell profiling in atherosclerosis: role in research and precision medicine

Fernandez, Dawn M; Giannarelli, Chiara
Inflammation is intimately involved at all stages of atherosclerosis and remains a substantial residual cardiovascular risk factor in optimally treated patients. The proof of concept that targeting inflammation reduces cardiovascular events in patients with a history of myocardial infarction has highlighted the urgent need to identify new immunotherapies to treat patients with atherosclerotic cardiovascular disease. Importantly, emerging data from new clinical trials show that successful immunotherapies for atherosclerosis need to be tailored to the specific immune alterations in distinct groups of patients. In this Review, we discuss how single-cell technologies - such as single-cell mass cytometry, single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing - are ideal for mapping the cellular and molecular composition of human atherosclerotic plaques and how these data can aid in the discovery of new precise immunotherapies. We also argue that single-cell data from studies in humans need to be rigorously validated in relevant experimental models, including rapidly emerging single-cell CRISPR screening technologies and mouse models of atherosclerosis. Finally, we discuss the importance of implementing single-cell immune monitoring tools in early phases of drug development to aid in the precise selection of the target patient population for data-driven translation into randomized clinical trials and the successful translation of new immunotherapies into the clinic.
PMID: 34267377
ISSN: 1759-5010
CID: 4938942

A mechanistic framework for cardiometabolic and coronary artery diseases

Koplev, Simon; Seldin, Marcus; Sukhavasi, Katyayani; Ermel, Raili; Pang, Shichao; Zeng, Lingyao; Bankier, Sean; Di Narzo, Antonio; Cheng, Haoxiang; Meda, Vamsidhar; Ma, Angela; Talukdar, Husain; Cohain, Ariella; Amadori, Letizia; Argmann, Carmen; Houten, Sander M; Franzén, Oscar; Mocci, Giuseppe; Meelu, Omar A; Ishikawa, Kiyotake; Whatling, Carl; Jain, Anamika; Jain, Rajeev Kumar; Gan, Li-Ming; Giannarelli, Chiara; Roussos, Panos; Hao, Ke; Schunkert, Heribert; Michoel, Tom; Ruusalepp, Arno; Schadt, Eric E; Kovacic, Jason C; Lusis, Aldon J; Björkegren, Johan L M
Coronary atherosclerosis results from the delicate interplay of genetic and exogenous risk factors, principally taking place in metabolic organs and the arterial wall. Here we show that 224 gene-regulatory coexpression networks (GRNs) identified by integrating genetic and clinical data from patients with (n = 600) and without (n = 250) coronary artery disease (CAD) with RNA-seq data from seven disease-relevant tissues in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study largely capture this delicate interplay, explaining >54% of CAD heritability. Within 89 cross-tissue GRNs associated with clinical severity of CAD, 374 endocrine factors facilitated inter-organ interactions, primarily along an axis from adipose tissue to the liver (n = 152). This axis was independently replicated in genetically diverse mouse strains and by injection of recombinant forms of adipose endocrine factors (EPDR1, FCN2, FSTL3 and LBP) that markedly altered blood lipid and glucose levels in mice. Altogether, the STARNET database and the associated GRN browser (http://starnet.mssm.edu) provide a multiorgan framework for exploration of the molecular interplay between cardiometabolic disorders and CAD.
PMCID:9583458
PMID: 36276926
ISSN: 2731-0590
CID: 5359232

Single cell analyses to understand the immune continuum in atherosclerosis

Hill, Christopher A; Fernandez, Dawn M; Giannarelli, Chiara
Atherosclerosis is initiated by the accumulation of lipids in the arterial wall that trigger a complex and poorly understood network of inflammatory processes. At the same time, recent clinical findings reveal that targeting specific immune alterations in patients with cardiovascular disease (CVD) represents a promising approach to preventing recurrent cardiovascular events. In order to achieve these tailored therapies, it is critical to resolve the heterogenous environment of the atherosclerotic lesion and decipher the complex structural and functional changes which immune cells undergo throughout disease progression. Recently, single-cell approaches including single cell mass cytometry by time of flight (CyTOF), single cell RNA sequencing (scRNA-seq) and Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) have emerged as valuable tools in resolving cellular plasticity within atherosclerotic lesions. In this review, we will discuss the most important insights that have been gleaned from the application of these single-cell approaches to validated experimental models of atherosclerosis. Additionally, as clinical progress in treatment of the disease depends on the translation of discoveries to human tissues, we will also examine the challenges associated with the application of single-cell approaches to human vascular tissue and the discoveries made by the initial efforts in this direction. Finally, we will analyze the advantages and limitations of dissociative single-cell approaches and how novel in-situ technologies could advance the field by allowing for the investigation of individual cells while preserving the heterogenous architecture of the atherosclerotic lesion.
PMID: 33934886
ISSN: 1879-1484
CID: 4865862

Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study

Requena-Ibáñez, Juan Antonio; Santos-Gallego, Carlos G; Rodriguez-Cordero, Anderly; Vargas-Delgado, Ariana P; Mancini, Donna; Sartori, Samantha; Atallah-Lajam, Farah; Giannarelli, Chiara; Macaluso, Frank; Lala, Anuradha; Sanz, Javier; Fuster, Valentin; Badimon, Juan José
OBJECTIVES/OBJECTIVE:The goal of this study was to evaluate the effect of empagliflozin, in addition to optimal medical treatment, on epicardial adipose tissue (EAT), interstitial myocardial fibrosis, and aortic stiffness in nondiabetic patients with heart failure with reduced ejection fraction (HFrEF). BACKGROUND:Several randomized clinical trials have established the benefits of the inhibitors of the sodium-glucose cotransporter-2 receptor (SGLT2-i) in HFrEF, independent of their hypoglycemic effects. The mechanisms of the benefits of SGLT2-i in HFrEF have not been well defined. METHODS:mapping (extracellular volume). Aortic stiffness was calculated by using pulsed wave velocity, and EAT was measured from the cine sequences. RESULTS:[95% CI: -2.72 to 20.99]; P < 0.05). Empagliflozin-treated patients reported a reduction in extracellular volume (-1.25% [±0.56 95% CI] vs 0.24% [±0.57 95% CI]; (P < 0.01)]; specifically, empagliflozin reduced both matrix volume (-7.24 mL [95% CI: -11.59 to -2.91] vs 0.70 mL [95% CI: -0.89 to 2.29]; P < 0.001) and cardiomyocyte volume (-11.08 mL [95% CI: -19.62 to -2.55] vs 0.80 mL [95% CI: -1.96 to 3.55]; P < 0.05). Pulsed wave velocity was also significantly reduced in the empagliflozin group (-0.58 cm/s [95% CI: -0.92 to -0.25] vs 0.60 cm/s [95% CI: 0.14 to 1.06]; P < 0.01). Using proteomics, empagliflozin was associated with a significant reduction in inflammatory biomarkers. CONCLUSIONS:Empagliflozin significantly improved adiposity, interstitial myocardial fibrosis, aortic stiffness, and inflammatory markers in nondiabetic patients with HFrEF. These results shed new light on the mechanisms of action of the benefits of SGLT2-i. (Are the "Cardiac Benefits" of Empagliflozin Independent of Its Hypoglycemic Activity [ATRU-4] [EMPA-TROPISM]; NCT03485222).
PMID: 34325888
ISSN: 2213-1787
CID: 4950002

Atherosclerosis inflammation and burden in young adult smokers and vapers measured by PET/MR

Sahota, Anoop; Naidu, Sonum; Jacobi, Adam; Giannarelli, Chiara; Woodward, Mark; Fayad, Zahi A; Mani, Venkatesh
BACKGROUND AND AIMS/OBJECTIVE:Electronic cigarette (EC) use is popular among youth, touted as a safer alternative to smoking and promoted as a tool to aid in smoking cessation. EC cardiovascular safety however is not well established. The aim of this study was to examine cardiovascular consequences of EC use by evaluating their effect on the entire atherosclerotic cascade in young adults using noninvasive combined positron emission tomography (PET)/magnetic resonance imaging (MR) and comparing EC use with age matched smokers of traditional cigarettes and nonsmoking controls. METHODS:Carotid PET/MR was applied to look at vascular inflammation (18-fluorodeoxyglucose (FDG)-PET) and plaque burden (multi-contrast MR of vessel wall) from 60 18-30 year-old subjects (20 electronic cigarette users, 20 traditional smokers and 20 nonsmokers). RESULTS:Groups were reasonably well balanced in terms of age, gender, demographics, cardiovascular risk and most biomarkers. There were no differences in vascular inflammation as measured by 18-FDG-PET target to background ratios (TBR) between EC users, traditional cigarette smokers and nonsmokers. However, measures of carotid plaque burden - wall area, normalized wall index, and wall thickness - measured from MR were significantly higher in both traditional smokers and EC users than in nonsmokers. CONCLUSIONS:Young adult EC users, smokers and nonsmokers in our study did not exhibit vascular inflammation as defined by 18-F-FDG-PET TBR max, but smokers and EC users had significantly more carotid plaque burden compared to matched nonsmokers. Results could indicate that vaping does not cause an increase in vascular inflammation as measured by FDG-PET.
PMID: 33896592
ISSN: 1879-1484
CID: 4852902

miR-33 Silencing Reprograms the Immune Cell Landscape in Atherosclerotic Plaques

Afonso, Milessa Silva; Sharma, Monika; Schlegel, Martin Paul; van Solingen, Coen; Koelwyn, Graeme J; Shanley, Lianne C; Beckett, Lauren; Peled, Daniel; Rahman, Karishma; Giannarelli, Chiara; Li, Huilin; Brown, Emily J; Khodadadi-Jamayran, Alireza; Fisher, Edward A; Moore, Kathryn J
Rationale: MicroRNA-33 post-transcriptionally represses genes involved in lipid metabolism and energy homeostasis. Targeted inhibition of miR-33 increases plasma HDL cholesterol and promotes atherosclerosis regression, in part, by enhancing reverse cholesterol transport and dampening plaque inflammation. However, how miR-33 reshapes the immune microenvironment of plaques remains poorly understood. Objective: To define how miR-33 inhibition alters the dynamic balance and transcriptional landscape of immune cells in atherosclerotic plaques. Methods and Results: We used single cell RNA-sequencing of aortic CD45+ cells, combined with immunohistologic, morphometric and flow cytometric analyses to define the changes in plaque immune cell composition, gene expression and function following miR-33 inhibition. We report that anti-miR-33 treatment of Ldlr-/- mice with advanced atherosclerosis reduced plaque burden and altered the plaque immune cell landscape by shifting the balance of pro- and anti-atherosclerotic macrophage and T cell subsets. By quantifying the kinetic processes that determine plaque macrophage burden, we found that anti-miR-33 reduced levels of circulating monocytes and splenic myeloid progenitors, decreased macrophage proliferation and retention, and promoted macrophage attrition by apoptosis and efferocytotic clearance. scRNA-sequencing of aortic arch plaques showed that anti-miR-33 reduced the frequency of MHCIIhi "inflammatory" and Trem2hi "metabolic" macrophages, but not tissue resident macrophages. Furthermore, anti-miR-33 led to derepression of distinct miR-33 target genes in the different macrophage subsets: in resident and Trem2hi macrophages, anti-miR-33 relieved repression of miR-33 target genes involved in lipid metabolism (e.g., Abca1, Ncoa1, Ncoa2, Crot), whereas in MHCIIhi macrophages, anti-miR-33 upregulated target genes involved in chromatin remodeling and transcriptional regulation. Anti-miR-33 also reduced the accumulation of aortic CD8+ T cells and CD4+ Th1 cells, and increased levels of FoxP3+ regulatory T cells in plaques, consistent with an immune-dampening effect on plaque inflammation. Conclusions: Our results provide insight into the immune mechanisms and cellular players that execute anti-miR-33's atheroprotective actions in the plaque.
PMID: 33593073
ISSN: 1524-4571
CID: 4786732

Wnt signaling enhances macrophage responses to IL-4 and promotes resolution of atherosclerosis

Weinstock, Ada; Rahman, Karishma; Yaacov, Or; Nishi, Hitoo; Menon, Prashanthi; Nikain, Cyrus A; Garabedian, Michela L; Pena, Stephanie; Akbar, Naveed; Sansbury, Brian E; Heffron, Sean P; Liu, Jianhua; Marecki, Gregory; Fernandez, Dawn; Brown, Emily J; Ruggles, Kelly V; Ramsey, Stephen; Giannarelli, Chiara; Spite, Matthew; Choudhury, Robin P; Loke, P'ng; Fisher, Edward A
Atherosclerosis is a disease of chronic inflammation. We investigated the roles of the cytokines IL-4 and IL-13, the classical activators of STAT6, in the resolution of atherosclerosis inflammation. Using Il4-/-Il13-/- mice, resolution was impaired, and in control mice, in both progressing and resolving plaques, levels of IL-4 were stably low, and IL-13 was undetectable. This suggested that IL-4 is required for atherosclerosis resolution, but collaborates with other factors. We had observed increased Wnt signaling in macrophages in resolving plaques, and human genetic data from others showed that a loss-of-function Wnt mutation was associated with premature atherosclerosis. We now find an inverse association between activation of Wnt signaling and disease severity in mice and humans. Wnt enhanced the expression of inflammation resolving factors after treatment with plaque-relevant low concentrations of IL-4. Mechanistically, activation of the Wnt pathway following lipid lowering potentiates IL-4 responsiveness in macrophages via a PGE2/STAT3 axis.
PMID: 33720008
ISSN: 2050-084x
CID: 4817422

An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease

Cohain, Ariella T; Barrington, William T; Jordan, Daniel M; Beckmann, Noam D; Argmann, Carmen A; Houten, Sander M; Charney, Alexander W; Ermel, Raili; Sukhavasi, Katyayani; Franzen, Oscar; Koplev, Simon; Whatling, Carl; Belbin, Gillian M; Yang, Jialiang; Hao, Ke; Kenny, Eimear E; Tu, Zhidong; Zhu, Jun; Gan, Li-Ming; Do, Ron; Giannarelli, Chiara; Kovacic, Jason C; Ruusalepp, Arno; Lusis, Aldons J; Bjorkegren, Johan L M; Schadt, Eric E
Elevated plasma cholesterol and type 2 diabetes (T2D) are associated with coronary artery disease (CAD). Individuals treated with cholesterol-lowering statins have increased T2D risk, while individuals with hypercholesterolemia have reduced T2D risk. We explore the relationship between lipid and glucose control by constructing network models from the STARNET study with sequencing data from seven cardiometabolic tissues obtained from CAD patients during coronary artery by-pass grafting surgery. By integrating gene expression, genotype, metabolomic, and clinical data, we identify a glucose and lipid determining (GLD) regulatory network showing inverse relationships with lipid and glucose traits. Master regulators of the GLD network also impact lipid and glucose levels in inverse directions. Experimental inhibition of one of the GLD network master regulators, lanosterol synthase (LSS), in mice confirms the inverse relationships to glucose and lipid levels as predicted by our model and provides mechanistic insights.
PMCID:7822923
PMID: 33483510
ISSN: 2041-1723
CID: 4844322