Try a new search

Format these results:

Searched for:

person:hanhws01

Total Results:

12


Macaque dendritic cells infected with SIV-recombinant canarypox ex vivo induce SIV-specific immune responses in vivo

Villamide-Herrera, L; Ignatius, R; Eller, M A; Wilkinson, K; Griffin, C; Mehlhop, E; Jones, J; Han, S Y; Lewis, M G; Parrish, S; Vancott, T C; Lifson, J D; Schlesinger, S; Mascola, J R; Pope, M
Dendritic cells (DCs) infected with recombinant avipox vectors express the introduced genes and activate antigen-specific T cells. DCs exhibit distinct differentiation-dependent immune functions. Moreover, immature DCs are readily infected by canarypox vectors, but undergo tumor necrosis factor (TNF)-alpha-dependent death, while fewer mature DCs get infected and resist dying. A pilot study was performed using the rhesus macaque system to explore whether immature and mature DCs infected with SIV-recombinant canarypox (vCP180) ex vivo could induce primary virus-specific immune responses in vivo. After subcutaneous (sc) reinjection, functional monocyte-derived DCs migrated to lymph nodes (LNs) within 1-2 days and primed T cells in vivo. This was observed by monitoring dye-labeled DCs in the draining LNs and tetanus toxoid (TT)-specific T cell responses after injection of TT-loaded DCs. DCs from simian immunodeficiency virus (SIV)-naïve rhesus macaques were infected with vCP180 (SIVmac142 gag, pol, and env genes), and sc reinjected into donor animals. Low-level SIV-specific T cell proliferation, but little if any interferon (IFN)-gamma production was detected. DCs pulsed with vCP180 in combination with TT and keyhole limpet hemocyanin (KLH) (to activate additional T cells and provide "helper" cytokines) induced SIV-, TT-, and KLH-specific T cell responses, including IFN-gamma responses not seen when vCP180-carrying DCs were used alone. Interleukin (IL)-10 and low-level antibody responses were also observed. This pilot study provides the proof of principle that sc injected ex vivo SIV-recombinant canarypox-infected DCs safely induce low-level SIV-specific immune responses in vivo.
PMID: 15320991
ISSN: 0889-2229
CID: 2969922

Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells

Messmer, Davorka; Jacqué, Jean-Marc; Santisteban, Christine; Bristow, Cynthia; Han, Seol-Young; Villamide-Herrera, Lorley; Mehlhop, Erin; Marx, Preston A; Steinman, Ralph M; Gettie, Agegnehu; Pope, Melissa
Immature dendritic cells (DCs), unlike mature DCs, require the viral determinant nef to drive immunodeficiency virus (SIV and HIV) replication in coculture with CD4(+) T cells. Since immature DCs may capture and get infected by virus during mucosal transmission, we hypothesized that Nef associated with the virus or produced during early replication might modulate DCs to augment virus dissemination. Adenovirus vectors expressing nef were used to introduce nef into DCs in the absence of other immunodeficiency virus determinants to examine Nef-induced changes that might activate immature DCs to acquire properties of mature DCs and drive virus replication. Nef expression by immature human and macaque DCs triggered IL-6, IL-12, TNF-alpha, CXCL8, CCL3, and CCL4 release, but without up-regulating costimulatory and other molecules characteristic of mature DCs. Coincident with this, nef-expressing immature DCs stimulated stronger autologous CD4(+) T cell responses. Both SIV and HIV nef-expressing DCs complemented defective SIVmac239 delta nef, driving replication in autologous immature DC-T cell cultures. In contrast, if DCs were activated after capturing delta nef, virus growth was not exacerbated. This highlights one way in which nef-defective virus-bearing immature DCs that mature while migrating to draining lymph nodes could induce stronger immune responses in the absence of overwhelming productive infection (unlike nef-containing wild-type virus). Therefore, Nef expressed in immature DCs signals a distinct activation program that promotes virus replication and T cell recruitment but without complete DC maturation, thereby lessening the likelihood that wild-type virus-infected immature DCs would activate virus-specific immunity, but facilitating virus dissemination.
PMID: 12370346
ISSN: 0022-1767
CID: 2969912