Try a new search

Format these results:

Searched for:

person:heacol01

in-biosketch:true

Total Results:

54


Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRI

Sanderink, Wendelien B G; Teuwen, Jonas; Appelman, Linda; Moy, Linda; Heacock, Laura; Weiland, Elisabeth; Karssemeijer, Nico; Baltzer, Pascal A T; Sechopoulos, Ioannis; Mann, Ritse M
PURPOSE/OBJECTIVE:To compare diffusion-weighted imaging of the breast performed with a conventional readout-segmented echo-planar imaging (rs-EPI) sequence to when using a prototype simultaneous multi-slice single-shot EPI (SMS-ss-EPI) acquisition. METHOD/METHODS:), weighted kappa, McNemar test, and dependent-samples t-test when appropriate. RESULTS:: 0.427, P = 0.016). Malignant lesions had significantly higher visibility with SMS-ss-EPI (P = 0.035). Sensitivity and specificity were comparable between both sequences (P = 0.760 and P = 0.549, respectively). CONCLUSIONS:Despite the perceived lower image quality and the increased presence of artifacts in the SMS-ss-EPI sequence, malignant lesions are better visualized using this sequence.
PMID: 33711569
ISSN: 1872-7727
CID: 4828832

Abbreviated MR Imaging for Breast Cancer

Heacock, Laura; Lewin, Alana A; Toth, Hildegard K; Moy, Linda; Reig, Beatriu
Breast MR imaging is the most sensitive imaging method for the detection of breast cancer and detects more aggressive malignancies than mammography and ultrasound examination. Despite these advantages, breast MR imaging has low use rates for breast cancer screening. Abbreviated breast MR imaging, in which a limited number of breast imaging sequences are obtained, has been proposed as a way to solve cost and patient tolerance issues while preserving the high cancer detection rate of breast MR imaging. This review discusses abbreviated breast MR imaging, including protocols, multicenter clinical trial results, clinical workflow implementation challenges, and future directions.
PMID: 33223003
ISSN: 1557-8275
CID: 4680132

Magnetic Resonance Imaging in Screening of Breast Cancer

Gao, Yiming; Reig, Beatriu; Heacock, Laura; Bennett, Debbie L; Heller, Samantha L; Moy, Linda
Magnetic Resonance (MR) imaging is the most sensitive modality for breast cancer detection but is currently limited to screening women at high risk due to limited specificity and test accessibility. However, specificity of MR imaging improves with successive rounds of screening, and abbreviated approaches have the potential to increase access and decrease cost. There is growing evidence to support supplemental MR imaging in moderate-risk women, and current guidelines continue to evolve. Functional imaging has the potential to maximize survival benefit of screening. Leveraging MR imaging as a possible primary screening tool is therefore also being investigated in average-risk women.
PMID: 33223002
ISSN: 1557-8275
CID: 4676352

An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization

Shen, Yiqiu; Wu, Nan; Phang, Jason; Park, Jungkyu; Liu, Kangning; Tyagi, Sudarshini; Heacock, Laura; Kim, S Gene; Moy, Linda; Cho, Kyunghyun; Geras, Krzysztof J
Medical images differ from natural images in significantly higher resolutions and smaller regions of interest. Because of these differences, neural network architectures that work well for natural images might not be applicable to medical image analysis. In this work, we propose a novel neural network model to address these unique properties of medical images. This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions. It then applies another higher-capacity network to collect details from chosen regions. Finally, it employs a fusion module that aggregates global and local information to make a prediction. While existing methods often require lesion segmentation during training, our model is trained with only image-level labels and can generate pixel-level saliency maps indicating possible malignant findings. We apply the model to screening mammography interpretation: predicting the presence or absence of benign and malignant lesions. On the NYU Breast Cancer Screening Dataset, our model outperforms (AUC = 0.93) ResNet-34 and Faster R-CNN in classifying breasts with malignant findings. On the CBIS-DDSM dataset, our model achieves performance (AUC = 0.858) on par with state-of-the-art approaches. Compared to ResNet-34, our model is 4.1x faster for inference while using 78.4% less GPU memory. Furthermore, we demonstrate, in a reader study, that our model surpasses radiologist-level AUC by a margin of 0.11.
PMID: 33383334
ISSN: 1361-8423
CID: 4759232

Role of MRI to Assess Response to Neoadjuvant Therapy for Breast Cancer

Reig, Beatriu; Heacock, Laura; Lewin, Alana; Cho, Nariya; Moy, Linda
The goals of imaging after neoadjuvant therapy for breast cancer are to monitor the response to therapy and facilitate surgical planning. MRI has been found to be more accurate than mammography, ultrasound, or clinical exam in evaluating treatment response. However, MRI may both overestimate and underestimate residual disease. The accuracy of MRI is dependent on tumor morphology, histology, shrinkage pattern, and molecular subtype. Emerging MRI techniques that combine functional information such as diffusion, metabolism, and hypoxia may improve MR accuracy. In addition, machine-learning techniques including radiomics and radiogenomics are being studied with the goal of predicting response on pretreatment imaging. This article comprehensively reviews response assessment on breast MRI and highlights areas of ongoing research. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 3.
PMID: 32227407
ISSN: 1522-2586
CID: 4370022

Machine learning in breast MRI

Reig, Beatriu; Heacock, Laura; Geras, Krzysztof J; Moy, Linda
Machine-learning techniques have led to remarkable advances in data extraction and analysis of medical imaging. Applications of machine learning to breast MRI continue to expand rapidly as increasingly accurate 3D breast and lesion segmentation allows the combination of radiologist-level interpretation (eg, BI-RADS lexicon), data from advanced multiparametric imaging techniques, and patient-level data such as genetic risk markers. Advances in breast MRI feature extraction have led to rapid dataset analysis, which offers promise in large pooled multiinstitutional data analysis. The object of this review is to provide an overview of machine-learning and deep-learning techniques for breast MRI, including supervised and unsupervised methods, anatomic breast segmentation, and lesion segmentation. Finally, it explores the role of machine learning, current limitations, and future applications to texture analysis, radiomics, and radiogenomics. Level of Evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019.
PMID: 31276247
ISSN: 1522-2586
CID: 3968372

Abbreviated Breast MRI: Road to Clinical Implementation

Heacock, Laura; Reig, Beatriu; Lewin, Alana A; Toth, Hildegard K; Moy, Linda; Lee, Cindy S
Breast MRI offers high sensitivity for breast cancer detection, with preferential detection of high-grade invasive cancers when compared to mammography and ultrasound. Despite the clear benefits of breast MRI in cancer screening, its cost, patient tolerance, and low utilization remain key issues. Abbreviated breast MRI, in which only a select number of sequences and postcontrast imaging are acquired, exploits the high sensitivity of breast MRI while reducing table time and reading time to maximize availability, patient tolerance, and accessibility. Worldwide studies of varying patient populations have demonstrated that the comparable diagnostic accuracy of abbreviated breast MRI is comparable to a full diagnostic protocol, highlighting the emerging role of abbreviated MRI screening in patients with an intermediate and high lifetime risk of breast cancer. The purpose of this review is to summarize the background and current literature relating to abbreviated MRI, highlight various protocols utilized in current multicenter clinical trials, describe workflow and clinical implementation issues, and discuss the future of abbreviated protocols, including advanced MRI techniques.
PMID: 38424988
ISSN: 2631-6129
CID: 5639442

Abbreviated breast MRI: Road to clinical implementation

Heacock, Laura; Reig, Beatriu; Lewin, Alana A.; Toth, Hildegard K.; Moy, Linda; Lee, Cindy S.
Breast MRI offers high sensitivity for breast cancer detection, with preferential detection of high-grade invasive cancers when compared to mammography and ultrasound. Despite the clear benefits of breast MRI in cancer screening, its cost, patient tolerance, and low utilization remain key issues. Abbreviated breast MRI, in which only a select number of sequences and postcontrast imaging are acquired, exploits the high sensitivity of breast MRI while reducing table time and reading time to maximize availability, patient tolerance, and accessibility. Worldwide studies of varying patient populations have demonstrated that the comparable diagnostic accuracy of abbreviated breast MRI is comparable to a full diagnostic protocol, highlighting the emerging role of abbreviated MRI screening in patients with an intermediate and high lifetime risk of breast cancer. The purpose of this review is to summarize the background and current literature relating to abbreviated MRI, highlight various protocols utilized in current multicenter clinical trials, describe workflow and clinical implementation issues, and discuss the future of abbreviated protocols, including advanced MRI techniques.
SCOPUS:85090429600
ISSN: 2631-6110
CID: 4612692

Dynamic Contrast-Enhanced MRI Evaluation of Pathologic Complete Response in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer After HER2-Targeted Therapy

Heacock, Laura; Lewin, Alana; Ayoola, Abimbola; Moccaldi, Melanie; Babb, James S; Kim, Sungheon G; Moy, Linda
RATIONALE AND OBJECTIVES/OBJECTIVE:Pathologic complete response (pCR) in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer after HER2-targeted therapy correlates increased disease-free survival and decreased mastectomy rates. The aim of this study was to explore tumor shrinkage patterns and initial tumor enhancement with pCR in HER2-positive breast cancer. MATERIALS AND METHODS/METHODS:This was an institutional review board-approved retrospective analysis of 51 HER2 positive breast cancer patients with breast MRI both pre- and post-HER2-targeted therapy. Initial enhancement ratio (IER, initial enhancement percentage over baseline at first postcontrast imaging), pattern of tumor shrinkage, and Dynamic contrast enhanced (DCE)-MRI imaging features were assessed. Wilcoxon rank, Spearman correlation, Fisher's exact, and Mann-Whitney tests were used to correlate MRI imaging features with pCR. IER reader agreement was evaluated by intraclass correlation. Binary logistic regression was used to evaluate multivariate associations with pCR. RESULTS:56.9% (29/51) of patients had pCR at surgery. Concentric tumor shrinkage pattern was associated with pCR (p = 0.001, Area under the curve (AUC) 0.778): accuracy 80.4%, specificity 96.6%, and sensitivity of 59.1%. There was no association with pCR and imaging response as defined by RECIST criteria (p = 0.169), pretreatment IER (Reader 1 (R1) p = 0.665, Reader 2 (R2) p = 0.766), or lesion size (p = 0.69). IER was associated with axillary metastases (R1 p = 0.016, R2 < 0.001) and ki-67 (R1 r = 0.52, p = 0.008, R2 r = -0.44, p = 0.028). CONCLUSION/CONCLUSIONS:The shrinkage pattern of HER2-positive tumors after targeted therapy may be associated with pCR. There was no association between IER and pCR. Future studies evaluating the correlation of shrinkage patterns to texture radiomics are of interest.
PMID: 31444111
ISSN: 1878-4046
CID: 4047202

Automated Segmentation of Tissues Using CT and MRI: A Systematic Review

Lenchik, Leon; Heacock, Laura; Weaver, Ashley A; Boutin, Robert D; Cook, Tessa S; Itri, Jason; Filippi, Christopher G; Gullapalli, Rao P; Lee, James; Zagurovskaya, Marianna; Retson, Tara; Godwin, Kendra; Nicholson, Joey; Narayana, Ponnada A
RATIONALE AND OBJECTIVES/OBJECTIVE:The automated segmentation of organs and tissues throughout the body using computed tomography and magnetic resonance imaging has been rapidly increasing. Research into many medical conditions has benefited greatly from these approaches by allowing the development of more rapid and reproducible quantitative imaging markers. These markers have been used to help diagnose disease, determine prognosis, select patients for therapy, and follow responses to therapy. Because some of these tools are now transitioning from research environments to clinical practice, it is important for radiologists to become familiar with various methods used for automated segmentation. MATERIALS AND METHODS/METHODS:The Radiology Research Alliance of the Association of University Radiologists convened an Automated Segmentation Task Force to conduct a systematic review of the peer-reviewed literature on this topic. RESULTS:The systematic review presented here includes 408 studies and discusses various approaches to automated segmentation using computed tomography and magnetic resonance imaging for neurologic, thoracic, abdominal, musculoskeletal, and breast imaging applications. CONCLUSION/CONCLUSIONS:These insights should help prepare radiologists to better evaluate automated segmentation tools and apply them not only to research, but eventually to clinical practice.
PMID: 31405724
ISSN: 1878-4046
CID: 4043202