Try a new search

Format these results:

Searched for:

person:ht265

Total Results:

12


The N-Terminal A/B domain of the thyroid hormone receptor-beta2 isoform influences ligand-dependent recruitment of coactivators to the ligand-binding domain

Tian, Henghe; Mahajan, Muktar A; Wong, Chun Tung; Habeos, Ioanis; Samuels, Herbert H
Thyroid hormone receptors (TRs), expressed as TRalpha1, TRbeta1, and TRbeta2 isoforms, are members of the steroid hormone nuclear receptor gene superfamily, which comprises ligand-dependent transcription factors. The TR isoforms differ primarily in their N-terminal (A/B) domains, suggesting that the A/B regions mediate distinct transcriptional activation functions in a cell type-dependent or promoter-specific fashion. The nuclear receptor ligand-binding domain (LBD) undergoes a conformational change upon ligand binding that results in the recruitment of coactivators to the LBD. For glucocorticoid receptor and estrogen receptor-alpha, the same coactivator can contact both the LBD and A/B domains, thus leading to enhanced transcriptional activation. Very little is known regarding the role of the A/B domains of the TR isoforms. The A/B domain of TRbeta2 exhibits higher ligand-independent transcriptional activity than the A/B regions of TRalpha1 or TRbeta1. Thus, we examined the role of the A/B domain and the LBD of rat TRbeta2 in integrating the transcriptional activation function of the A/B and LBD domains by different coactivators. Both domains are essential for a productive functional interaction with cAMP response element-binding protein (CREB)-binding protein (CBP), and we found that CBP binds to the A/B domain of TRbeta2 in vitro. In contrast, steroid receptor coactivator-1a (SRC-1a) interacts strongly with the LBD but not the A/B domain. The coactivator NRC (nuclear receptor coactivator) interacts primarily with the LBD, although a weak interaction with the A/B domain further enhances ligand-dependent binding with TRbeta2. Our studies document the interplay between the A/B domain and the LBD of TRbeta2 in recruiting different coactivators to the receptor. Because NRC and SRC-1a bind CBP, and CBP enhances ligand-dependent activity, our studies suggest a model in which coactivator recruitment of NRC (or SRC-1a) occurs primarily through the LBD whereas the complex is further stabilized through an interaction of CBP with the N terminus of TRbeta2
PMID: 16645037
ISSN: 0888-8809
CID: 68746

Regeneration of articular cartilage--evaluation of osteochondral defect repair in the rabbit using multiphasic implants

Frenkel, S R; Bradica, G; Brekke, J H; Goldman, S M; Ieska, K; Issack, P; Bong, M R; Tian, H; Gokhale, J; Coutts, R D; Kronengold, R T
OBJECTIVE: To investigate whether two different multiphasic implants could initiate and sustain repair of osteochondral defects in rabbits. The implants address the malleable properties of cartilage while also addressing the rigid characteristics of subchondral bone. DESIGN: The bone region of both devices consisted of D, D-L, L-polylactic acid invested with hyaluronan (HY). The cartilage region of the first device was a polyelectrolytic complex (PEC) hydrogel of HY and chitosan. In the second device the cartilage region consisted of type I collagen scaffold. Eighteen rabbits were implanted bilaterally with a device, or underwent defect creation with no implant. At 24 weeks, regenerated tissues were evaluated grossly, histologically and via immunostaining for type II collagen. RESULTS: PEC devices induced a significantly better repair than untreated shams. Collagen devices resulted in a quality of repair close to that of the PEC group, although its mean repair score (19.0+/-4.2) did not differ significantly from that of the PEC group (20.4+/-3.7) or the shams (16.5+/-6.3). The percentage of hyaline-appearing cartilage in the repair was highest with collagen implants, while the degree of bonding of repair to the host, structural integrity of the neocartilage, and reconstitution of the subchondral bone was greatest with PEC devices. Cartilage in both device-treated sites stained positive for type II collagen and GAG. CONCLUSIONS: Both implants are capable of maintaining hyaline-appearing tissue at 24 weeks. The physicochemical region between the cartilage and bone compartments makes these devices well suited for delivery of different growth factors or drugs in each compartment, or different doses of the same factor. It also renders these devices excellent vehicles for chondrocyte or stem cell transplantation
PMID: 15967685
ISSN: 1063-4584
CID: 61417