Try a new search

Format these results:

Searched for:

person:huangt03

Total Results:

56


Transcription-Replication Conflicts as a Source of Genome Instability

Goehring, Liana; Huang, Tony T; Smith, Duncan J
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
PMID: 37552891
ISSN: 1545-2948
CID: 5590972

Confronting the loss of trophic support

Hu, Hui-Lan; Khatri, Latika; Santacruz, Marilyn; Church, Emily; Moore, Christopher; Huang, Tony T; Chao, Moses V
Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.
PMCID:10338843
PMID: 37456526
ISSN: 1662-5099
CID: 5535402

USP1-trapping lesions as a source of DNA replication stress and genomic instability

Coleman, Kate E; Yin, Yandong; Lui, Sarah Kit Leng; Keegan, Sarah; Fenyo, David; Smith, Duncan J; Rothenberg, Eli; Huang, Tony T
The deubiquitinase USP1 is a critical regulator of genome integrity through the deubiquitylation of Fanconi Anemia proteins and the DNA replication processivity factor, proliferating cell nuclear antigen (PCNA). Uniquely, following UV irradiation, USP1 self-inactivates through autocleavage, which enables its own degradation and in turn, upregulates PCNA monoubiquitylation. However, the functional role for this autocleavage event during physiological conditions remains elusive. Herein, we discover that cells harboring an autocleavage-defective USP1 mutant, while still able to robustly deubiquitylate PCNA, experience more replication fork-stalling and premature fork termination events. Using super-resolution microscopy and live-cell single-molecule tracking, we show that these defects are related to the inability of this USP1 mutant to be properly recycled from sites of active DNA synthesis, resulting in replication-associated lesions. Furthermore, we find that the removal of USP1 molecules from DNA is facilitated by the DNA-dependent metalloprotease Spartan to counteract the cytotoxicity caused by "USP1-trapping". We propose a utility of USP1 inhibitors in cancer therapy based on their ability to induce USP1-trapping lesions and consequent replication stress and genomic instability in cancer cells, similar to how non-covalent DNA-protein crosslinks cause cytotoxicity by imposing steric hindrances upon proteins involved in DNA transactions.
PMCID:8975806
PMID: 35365626
ISSN: 2041-1723
CID: 5201472

Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirus-reactivating neurons

Hu, Hui-Lan; Srinivas, Kalanghad P; Wang, Shuoshuo; Chao, Moses V; Lionnet, Timothee; Mohr, Ian; Wilson, Angus C; Depledge, Daniel P; Huang, Tony T
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.
PMID: 34842321
ISSN: 1469-3178
CID: 5065412

A basal-level activity of ATR links replication fork surveillance and stress response

Yin, Yandong; Lee, Wei Ting Chelsea; Gupta, Dipika; Xue, Huijun; Tonzi, Peter; Borowiec, James A; Huang, Tony T; Modesti, Mauro; Rothenberg, Eli
Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.
PMID: 34473946
ISSN: 1097-4164
CID: 5000152

A molecular sensor determines the ubiquitin substrate specificity of SARS-CoV-2 papain-like protease

Patchett, Stephanie; Lv, Zongyang; Rut, Wioletta; Békés, Miklos; Drag, Marcin; Olsen, Shaun K; Huang, Tony T
The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.
PMCID:8423903
PMID: 34547223
ISSN: 2211-1247
CID: 5012592

WEE1i-ATRi combination therapy: a promising low-dose treatment for CCNE1-amplified gynecologic cancers

Goehring, Liana; Huang, Tony T
PMCID:8484682
PMID: 34622238
ISSN: 2666-3791
CID: 5147632

FANCI functions as a repair/apoptosis switch in response to DNA crosslinks

Shah, Richa B; Kernan, Jennifer L; van Hoogstraten, Anya; Ando, Kiyohiro; Li, Yuanyuan; Belcher, Alicia L; Mininger, Ivy; Bussenault, Andrei M; Raman, Renuka; Ramanagoudr-Bhojappa, Ramanagouda; Huang, Tony T; D'Andrea, Alan D; Chandrasekharappa, Settara C; Aggarwal, Aneel K; Thompson, Ruth; Sidi, Samuel
Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.
PMCID:8378530
PMID: 34256011
ISSN: 1878-1551
CID: 4979572

Fused in sarcoma regulates DNA replication timing and kinetics

Jia, Weiyan; Kim, Sang Hwa; Scalf, Mark A; Tonzi, Peter; Millikin, Robert J; Guns, William M; Liu, Lu; Mastrocola, Adam S; Smith, Lloyd M; Huang, Tony T; Tibbetts, Randal S
Fused in sarcoma (FUS) encodes an RNA-binding protein with diverse roles in transcriptional activation and RNA splicing. While oncogenic fusions of FUS and transcription factor DNA-binding domains are associated with soft tissue sarcomas, dominant mutations in FUS can cause amyotrophic lateral sclerosis. FUS has also been implicated in genome maintenance. However, the underlying mechanisms of its actions in genome stability are unknown. Here, we applied gene editing, functional reconstitution, and integrated proteomics and transcriptomics to illuminate roles for FUS in DNA replication and repair. Consistent with a supportive role in DNA double-strand break repair, FUS-deficient cells exhibited subtle alterations in the recruitment and retention of double-strand break-associated factors, including 53BP1 and BRCA1. FUS-/- cells also exhibited reduced proliferative potential that correlated with reduced speed of replication fork progression, diminished loading of prereplication complexes, enhanced micronucleus formation, and attenuated expression and splicing of S-phase-associated genes. Finally, FUS-deficient cells exhibited genome-wide alterations in DNA replication timing that were reversed upon re-expression of FUS complementary DNA. We also showed that FUS-dependent replication domains were enriched in transcriptionally active chromatin and that FUS was required for the timely replication of transcriptionally active DNA. These findings suggest that alterations in DNA replication kinetics and programming contribute to genome instability and functional defects in FUS-deficient cells.
PMCID:8403768
PMID: 34375640
ISSN: 1083-351x
CID: 5010782

Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling

Lee, Wei Ting C; Yin, Yandong; Morten, Michael J; Tonzi, Peter; Gwo, Pam Pam; Odermatt, Diana C; Modesti, Mauro; Cantor, Sharon B; Gari, Kerstin; Huang, Tony T; Rothenberg, Eli
Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.
PMCID:8099879
PMID: 33953191
ISSN: 2041-1723
CID: 4866522