Try a new search

Format these results:

Searched for:

person:hubbas01

in-biosketch:yes

Total Results:

46


Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y
KCa2.1, KCa2.2, KCa2.3, and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NPDK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site.
PMCID:5005030
PMID: 27542194
ISSN: 2050-084x
CID: 2219562

ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation

Hammaren, Henrik M; Ungureanu, Daniela; Grisouard, Jean; Skoda, Radek C; Hubbard, Stevan R; Silvennoinen, Olli
Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase-kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches.
PMCID:4403165
PMID: 25825724
ISSN: 1091-6490
CID: 1531932

Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

Silvennoinen, Olli; Hubbard, Stevan R
The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.
PMCID:4447858
PMID: 25824690
ISSN: 1528-0020
CID: 1644532

The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

Cabail, M Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E; Hubbard, Stevan R; Miller, W Todd
The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of alpha-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.
PMCID:4758444
PMID: 25758790
ISSN: 2041-1723
CID: 1495912

Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase

Shan, Yibing; Gnanasambandan, Kavitha; Ungureanu, Daniela; Kim, Eric T; Hammaren, Henrik; Yamashita, Kazuo; Silvennoinen, Olli; Shaw, David E; Hubbard, Stevan R
Janus kinase-2 (JAK2) mediates signaling by various cytokines, including erythropoietin and growth hormone. JAK2 possesses tandem pseudokinase and tyrosine-kinase domains. Mutations in the pseudokinase domain are causally linked to myeloproliferative neoplasms (MPNs) in humans. The structure of the JAK2 tandem kinase domains is unknown, and therefore the molecular bases for pseudokinase-mediated autoinhibition and pathogenic activation remain obscure. Using molecular dynamics simulations of protein-protein docking, we produced a structural model for the autoinhibitory interaction between the JAK2 pseudokinase and kinase domains. A striking feature of our model, which is supported by mutagenesis experiments, is that nearly all of the disease mutations map to the domain interface. The simulations indicate that the kinase domain is stabilized in an inactive state by the pseudokinase domain, and they offer a molecular rationale for the hyperactivity of V617F, the predominant JAK2 MPN mutation.
PMCID:4508010
PMID: 24918548
ISSN: 1545-9985
CID: 1102862

Structural basis for the interaction of the adaptor protein grb14 with activated ras

Qamra, Rohini; Hubbard, Stevan R
Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-A resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V). The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM) and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.
PMCID:3742580
PMID: 23967305
ISSN: 1932-6203
CID: 503702

Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector

Wynne, Joseph P; Wu, Jinhua; Su, Wenjuan; Mor, Adam; Patsoukis, Nikolaos; Boussiotis, Vassiliki A; Hubbard, Stevan R; Philips, Mark R
Adaptive immunity depends on lymphocyte adhesion that is mediated by the integrin lymphocyte functional antigen 1 (LFA-1). The small guanosine triphosphatase Rap1 regulates LFA-1 adhesiveness through one of its effectors, Rap1-interacting adapter molecule (RIAM). We show that RIAM was recruited to the lymphocyte plasma membrane (PM) through its Ras association (RA) and pleckstrin homology (PH) domains, both of which were required for lymphocyte adhesion. The N terminus of RIAM inhibited membrane translocation. In vitro, the RA domain bound both Rap1 and H-Ras with equal but relatively low affinity, whereas in vivo only Rap1 was required for PM association. The PH domain bound phosphoinositol 4,5-bisphosphate (PI(4,5)P(2)) and was responsible for the spatial distribution of RIAM only at the PM of activated T cells. We determined the crystal structure of the RA and PH domains and found that, despite an intervening linker of 50 aa, the two domains were integrated into a single structural unit, which was critical for proper localization to the PM. Thus, the RA-PH domains of RIAM function as a proximity detector for activated Rap1 and PI(4,5)P(2).
PMCID:3471229
PMID: 23045549
ISSN: 0021-9525
CID: 180090

Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F

Bandaranayake, Rajintha M; Ungureanu, Daniela; Shan, Yibing; Shaw, David E; Silvennoinen, Olli; Hubbard, Stevan R
The protein tyrosine kinase JAK2 mediates signaling through numerous cytokine receptors. JAK2 possesses a pseudokinase domain (JH2) and a tyrosine kinase domain (JH1). Through unknown mechanisms, JH2 regulates the catalytic activity of JH1, and hyperactivating mutations in the JH2 region of human JAK2 cause myeloproliferative neoplasms (MPNs). We showed previously that JAK2 JH2 is, in fact, catalytically active. Here we present crystal structures of human JAK2 JH2, including both wild type and the most prevalent MPN mutant, V617F. The structures reveal that JH2 adopts the fold of a prototypical protein kinase but binds Mg-ATP noncanonically. The structural and biochemical data indicate that the V617F mutation rigidifies alpha-helix C in the N lobe of JH2, facilitating trans-phosphorylation of JH1. The crystal structures of JH2 afford new opportunities for the design of novel JAK2 therapeutics targeting MPNs.
PMCID:3414675
PMID: 22820988
ISSN: 1545-9985
CID: 174351

Biochemical characterization of the Drosophila insulin receptor kinase and longevity-associated mutants

Krishnan, Harini; Ahmed, Sultan; Hubbard, Stevan R; Miller, W Todd
Drosophila melanogaster (fruit fly) insulin receptor (D-IR) is highly homologous to the human counterpart. Like the human pathway, D-IR responds to numerous insulin-like peptides to activate cellular signals that regulate growth, development, and lipid metabolism in fruit flies. Allelic mutations in the D-IR kinase domain elevate life expectancy in fruit flies. We developed a robust heterologous expression system to express and purify wild-type and longevity-associated mutant D-IR kinase domains to investigate enzyme kinetics and substrate specificities. D-IR exhibits remarkable similarities to the human insulin receptor kinase domain but diverges in substrate preferences. We show that longevity-associated mutations reduce D-IR catalytic activity. Deletion of the unique kinase insert domain portion or mutations proximal to activating tyrosines do not influence kinase activity, suggesting their potential role in substrate recruitment and downstream signaling. Through biochemical investigations, this study enhances our comprehension of D-IR's role in Drosophila physiology, complementing genetic studies and expanding our knowledge on the catalytic functions of this conserved signaling pathway.
PMID: 38071609
ISSN: 1530-6860
CID: 5589402

New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation

Arwood, Matthew L; Liu, Yao; Harkins, Shannon K; Weinstock, David M; Yang, Lei; Stevenson, Kristen E; Plana, Olivia D; Dong, Jingyun; Cirka, Haley; Jones, Kristen L; Virtanen, Anniina T; Gupta, Dikshat G; Ceas, Amanda; Lawney, Brian; Yoda, Akinori; Leahy, Catharine; Hao, Mingfeng; He, Zhixiang; Choi, Hwan Geun; Wang, Yaning; Silvennoinen, Olli; Hubbard, Stevan R; Zhang, Tinghu; Gray, Nathanael S; Li, Loretta S
Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.
PMID: 37290440
ISSN: 2451-9448
CID: 5540952