Try a new search

Format these results:

Searched for:

person:hubbas01

Total Results:

94


Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1

Ji, Tianyang; Corbalán-García, Senena; Hubbard, Stevan R
KCa3.1 (also known as SK4 or IK1) is a mammalian intermediate-conductance potassium channel that plays a critical role in the activation of T cells, B cells, and mast cells, effluxing potassium ions to maintain a negative membrane potential for influxing calcium ions. KCa3.1 shares primary sequence similarity with three other (low-conductance) potassium channels: KCa2.1, KCa2.2, and KCa2.3 (also known as SK1-3). These four homotetrameric channels bind calmodulin (CaM) in the cytoplasmic region, and calcium binding to CaM triggers channel activation. Unique to KCa3.1, activation also requires phosphorylation of a single histidine residue, His358, in the cytoplasmic region, which relieves copper-mediated inhibition of the channel. Near the cytoplasmic C-terminus of KCa3.1 (and KCa2.1-2.3), secondary-structure analysis predicts the presence of a coiled-coil/heptad repeat. Here, we report the crystal structure of the C-terminal coiled-coil region of KCa3.1, which forms a parallel four-helix bundle, consistent with the tetrameric nature of the channel. Interestingly, the four copies of a histidine residue, His389, in an 'a' position within the heptad repeat, are observed to bind a copper ion along the four-fold axis of the bundle. These results suggest that His358, the inhibitory histidine in KCa3.1, might coordinate a copper ion through a similar binding mode.
PMCID:6023178
PMID: 29953543
ISSN: 1932-6203
CID: 3161962

Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase

Hubbard, Stevan R
JAK2 is a member of the Janus kinase (JAKs) family of non-receptor protein tyrosine kinases, which includes JAK1-3 and TYK2. JAKs serve as the cytoplasmic signaling components of cytokine receptors and are activated through cytokine-mediated trans-phosphorylation, which leads to receptor phosphorylation and recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins. JAKs are unique among tyrosine kinases in that they possess a pseudokinase domain, which is just upstream of the C-terminal tyrosine kinase domain. A wealth of biochemical and clinical data have established that the pseudokinase domain of JAKs is crucial for maintaining a low basal (absence of cytokine) level of tyrosine kinase activity. In particular, gain-of-function mutations in the JAK genes, most frequently, V617F in the pseudokinase domain of JAK2, have been mapped in patients with blood disorders, including myeloproliferative neoplasms and leukemias. Recent structural and biochemical studies have begun to decipher the molecular mechanisms that maintain the basal, low-activity state of JAKs and that, via mutation, lead to constitutive activity and disease. This review will examine these mechanisms and describe how this knowledge could potentially inform drug development efforts aimed at obtaining a mutant (V617F)-selective inhibitor of JAK2.
PMCID:5770812
PMID: 29379470
ISSN: 1664-2392
CID: 2933322

Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance

Petersen, Max C; Madiraju, Anila K; Gassaway, Brandon M; Marcel, Michael; Nasiri, Ali R; Butrico, Gina; Marcucci, Melissa J; Zhang, Dongyan; Abulizi, Abudukadier; Zhang, Xian-Man; Philbrick, William; Hubbard, Stevan R; Jurczak, Michael J; Samuel, Varman T; Rinehart, Jesse; Shulman, Gerald I
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-epsilon (PKCepsilon) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCepsilon inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCepsilon substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCepsilon in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet-induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCepsilon and INSR in mediating NAFLD-induced hepatic insulin resistance.
PMCID:5096902
PMID: 27760050
ISSN: 0021-9738
CID: 2311932

Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y
KCa2.1, KCa2.2, KCa2.3, and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NPDK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site.
PMCID:5005030
PMID: 27542194
ISSN: 2050-084x
CID: 2219562

Targeting the Inactive Conformation of JAK2 in Hematological Malignancies

Silvennoinen, Olli; Hubbard, Stevan R
Activating JAK2 mutants cause hematological malignancies. Current clinical type I JAK2 inhibitors effectively relieve symptoms but fail to resolve the disease. In this issue of Cancer Cell, two articles by Wu and colleagues and Meyer and colleagues characterize a type II JAK2 inhibitor that is effective in preclinical models of JAK2-dependent myeloproliferative neoplasms and B cell acute lymphoblastic leukemia.
PMID: 26175407
ISSN: 1878-3686
CID: 1668852

Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

Silvennoinen, Olli; Hubbard, Stevan R
The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.
PMCID:4447858
PMID: 25824690
ISSN: 1528-0020
CID: 1644532

ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation

Hammaren, Henrik M; Ungureanu, Daniela; Grisouard, Jean; Skoda, Radek C; Hubbard, Stevan R; Silvennoinen, Olli
Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase-kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches.
PMCID:4403165
PMID: 25825724
ISSN: 1091-6490
CID: 1531932

Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium tuberculosis against Nitric Oxide

Samanovic, Marie I; Tu, Shengjiang; Novak, Ondrej; Iyer, Lakshminarayan M; McAllister, Fiona E; Aravind, L; Gygi, Steven P; Hubbard, Stevan R; Strnad, Miroslav; Darwin, K Heran
One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homolog of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO.
PMCID:4369403
PMID: 25728768
ISSN: 1097-4164
CID: 1520722

The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

Cabail, M Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E; Hubbard, Stevan R; Miller, W Todd
The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of alpha-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.
PMCID:4758444
PMID: 25758790
ISSN: 2041-1723
CID: 1495912

The tyrosine kinase domains of the insulin and IGF1 receptors are functional dimers in the activated state [Meeting Abstract]

Cabail, Maria; Li, Shiqing; Lemmon, Eric; Bowen, Mark; Hubbard, Stevan; Miller, Todd
ISI:000361722701332
ISSN: 1530-6860
CID: 1812532