Try a new search

Format these results:

Searched for:

person:johnsg01

in-biosketch:yes

Total Results:

94


Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla

Inglese, M; Madelin, G; Oesingmann, N; Babb, J S; Wu, W; Stoeckel, B; Herbert, J; Johnson, G
Neuro-axonal degeneration occurs progressively from the onset of multiple sclerosis and is thought to be a significant cause of increasing clinical disability. Several histopathological studies of multiple sclerosis and experimental autoimmune encephalomyelitis have shown that the accumulation of sodium in axons can promote reverse action of the sodium/calcium exchanger that, in turn, leads to a lethal overload in intra-axonal calcium. We hypothesized that sodium magnetic resonance imaging would provide an indicator of cellular and metabolic integrity and ion homeostasis in patients with multiple sclerosis. Using a three-dimensional radial gradient-echo sequence with short echo time, we performed sodium magnetic resonance imaging at 3 T in 17 patients with relapsing-remitting multiple sclerosis and in 13 normal subjects. The absolute total tissue sodium concentration was measured in lesions and in several areas of normal-appearing white and grey matter in patients, and corresponding areas of white and grey matter in controls. A mixed model analysis of covariance was performed to compare regional tissue sodium concentration levels in patients and controls. Spearman correlations were used to determine the association of regional tissue sodium concentration levels in T(2)- and T(1)-weighted lesions with measures of normalized whole brain and grey and white matter volumes, and with expanded disability status scale scores. In patients, tissue sodium concentration levels were found to be elevated in acute and chronic lesions compared to areas of normal-appearing white matter (P < 0.0001). The tissue sodium concentration levels in areas of normal-appearing white matter were significantly higher than those in corresponding white matter regions in healthy controls (P < 0.0001). The tissue sodium concentration value averaged over lesions and over regions of normal-appearing white and grey matter was positively associated with T(2)-weighted (P < or = 0.001 for all) and T(1)-weighted (P < or = 0.006 for all) lesion volumes. In patients, only the tissue sodium concentration value averaged over regions of normal-appearing grey matter was negatively associated with the normalized grey matter volume (P = 0.0009). Finally, the expanded disability status scale score showed a mild, positive association with the mean tissue sodium concentration value in chronic lesions (P = 0.002), in regions of normal-appearing white matter (P = 0.004) and normal-appearing grey matter (P = 0.002). This study shows the feasibility of using in vivo sodium magnetic resonance imaging at 3 T in patients with multiple sclerosis. Our findings suggest that the abnormal values of the tissue sodium concentration in patients with relapsing-remitting multiple sclerosis might reflect changes in cellular composition of the lesions and/or changes in cellular and metabolic integrity. Sodium magnetic resonance imaging has the potential to provide insight into the pathophysiological mechanisms of tissue injury when correlation with histopathology becomes available
PMCID:2842511
PMID: 20110245
ISSN: 0006-8950
CID: 108789

Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting

Caseiras, Gisele B; Chheang, Sophie; Babb, James; Rees, Jeremy H; Pecerrelli, Nicole; Tozer, Daniel J; Benton, Christopher; Zagzag, David; Johnson, Glyn; Waldman, Adam D; Jager, H R; Law, Meng
BACKGROUND/PURPOSE: The prognostic value of defining subcategories of gliomas is still controversial. This study aims to determine the utility of relative cerebral blood volume (rCBV) in predicting clinical response in patients with low-grade glioma at multiple institutions. MATERIALS AND METHODS: Sixty-nine patients were studied with dynamic susceptibility contrast-enhanced perfusion MRI at two institutions. The pathologic diagnoses of the low-grade gliomas were 34 astrocytomas, 20 oligodendroglioma, 9 oligoastrocytomas, 1 ganglioglioma and 5 with indeterminate histology. Wilcoxon tests were used to compare patients in different response categories with respect to baseline rCBV. Kaplan-Meier curve and log-rank tests were used to predict the association of rCBV with time to progression. RESULTS: At both institutions, patients with an adverse event (progressive disease or death) had a significantly higher baseline rCBV than those without (complete response or stable disease) (p value=0.0138). The odds ratio for detecting an adverse event when using rCBV was 1.87 (95% confidence interval: 1.14-3.08). rCBV was significantly negatively associated with time to progression (p=0.005). The median time to progression among subjects with rCBV>1.75 was 365 days, while there was 95% confidence that the median time to progression was at least 889 days among subjects with rCBV<1.75. CONCLUSION: Our study suggests not only that rCBV measurements correlate well with time to progression or death, but also that the findings can be replicated across institutions, which supports the application of rCBV as an adjunct to pathology in predicting glioma biology
PMID: 19201123
ISSN: 1872-7727
CID: 92909

Robust quantification of contrast agent (CA) concentration with magnetic field correlation (MFC) imaging

Patil, Vishal; Johnson, Glyn; Jensen, Jens H
Contrast-enhanced perfusion studies of the brain by means magnetic resonance imaging (MRI) are used to estimate a number of important brain tissue parameters, including cerebral blood flow and volume. In order to calculate these parameters, the contrast agent (CA) concentration must first be estimated. This is usually accomplished by measurement of a nuclear magnetic resonance (NMR) relaxation rate with the assumption of a linear relationship between the rate and the CA concentration. However, such a linear relationship does not necessarily hold in biological tissues due to compartmentalization of the CA in either the intravascular or extracellular spaces. Here we propose an alternative MRI method of CA quantification based on measurement of the magnetic field correlation (MFC), which is theoretically predicted to have a robust quadratic dependence on the CA concentration even when the CA is compartmentalized. In this study, CA concentration estimation by means of MFC is shown to be more accurate than established methods based on relaxation rates in yeast cell suspensions. Magn Reson Med, 2009. (c) 2009 Wiley-Liss, Inc
PMCID:3774105
PMID: 19672949
ISSN: 1522-2594
CID: 101580

White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis

Varga, Andrew W; Johnson, Glyn; Babb, James S; Herbert, Joseph; Grossman, Robert I; Inglese, Matilde
BACKGROUND: Hypoperfusion has been reported in lesions, normal-appearing white (NAWM) and gray matter (NAGM) of patients with clinically definite multiple sclerosis (MS) by using perfusion MRI. However, it is still unknown how early such changes in perfusion occur. The aim of our study was to assess the presence of hemodynamic changes in the NAWM and subcortical NAGM of patients with clinically isolated syndrome (CIS) in comparison to healthy controls and to patients with early relapsing-remitting (RR) MS. METHODS: Absolute cerebral blood flow (CBF), blood volume (CBV) and mean transit time (MTT) were measured in the periventricular and frontal NAWM, thalamus and putamen nuclei of 12 patients with CIS, 12 with early RR-MS and 12 healthy controls using dynamic susceptibility contrast enhanced (DSC) T2-weighted MRI. RESULTS: Compared to controls, CBF was significantly decreased in the periventricular NAWM of CIS patients and in the periventricular NAWM and putamen of RR-MS patients. Compared to CIS, RR-MS patients showed a significant CBF decrease in the putamen. CONCLUSIONS: CBF was decreased in the NAWM of both CIS and RR-MS patients and in the subcortical NAGM of RR-MS patients suggesting a continuum of tissue perfusion decreases beginning in white matter and spreading to gray matter, as the disease progresses
PMCID:2737614
PMID: 19181347
ISSN: 0022-510x
CID: 95061

Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival

Narayana, Ashwatha; Kelly, Patrick; Golfinos, John; Parker, Erik; Johnson, Glyn; Knopp, Edmond; Zagzag, David; Fischer, Ingeborg; Raza, Shahzad; Medabalmi, Praveen; Eagan, Patricia; Gruber, Michael L
Object Antiangiogenic agents have recently shown impressive radiological responses in high-grade glioma. However, it is not clear if the responses are related to vascular changes or due to antitumoral effects. The authors report the mature results of a clinical study of bevacizumab-based treatment of recurrent high-grade gliomas. Methods Sixty-one patients with recurrent high-grade gliomas received treatment with bevacizumab at 10 mg/kg every 2 weeks for 4 doses in an 8-week cycle along with either irinotecan or carboplatin. The choice of concomitant chemotherapeutic agent was based on the number of recurrences and prior chemotherapy. Results At a median follow-up of 7.5 months (range 1-19 months), 50 (82%) of 61 patients relapsed and 42 patients (70%) died of the disease. The median number of administered bevacizumab cycles was 2 (range 1-7 cycles). The median progression-free survival (PFS) and overall survival (OS) were 5 (95% confidence interval [CI] 2.3-7.7) and 9 (95% CI 7.6-10.4) months, respectively, as calculated from the initiation of the bevacizumab-based therapy. Radiologically demonstrated responses following therapy were noted in 73.6% of cases. Neither the choice of chemotherapeutic agent nor the performance of a resection prior to therapy had an impact on patient survival. Although the predominant pattern of relapse was local, 15 patients (30%) had diffuse disease. Conclusions Antiangiogenic therapy using bevacizumab appears to improve survival in patients with recurrent high-grade glioma. A possible change in the invasiveness of the tumor following therapy is worrisome and must be closely monitored
PMID: 18834263
ISSN: 0022-3085
CID: 90721

Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging

Law, Meng; Young, Robert J; Babb, James S; Peccerelli, Nicole; Chheang, Sophie; Gruber, Michael L; Miller, Douglas C; Golfinos, John G; Zagzag, David; Johnson, Glyn
PURPOSE: To retrospectively determine whether relative cerebral blood volume (CBV) measurements can be used to predict clinical outcome in patients with high-grade gliomas (HGGs) and low-grade gliomas (LGGs) and specifically whether patients who have gliomas with a high initial relative CBV have more rapid progression than those who have gliomas with a low relative CBV. MATERIALS AND METHODS: Approval for this retrospective HIPAA-compliant study was obtained from the Institutional Board of Research Associates, with waiver of informed consent. One hundred eighty-nine patients (122 male and 67 female patients; median age, 43 years; range, 4-80 years) were examined with dynamic susceptibility-weighted contrast material-enhanced perfusion magnetic resonance (MR) imaging and were followed up clinically with MR imaging (median follow-up, 334 days). Log-rank tests were used to evaluate the association between relative CBV and time to progression by using Kaplan-Meier curves. Binary logistic regression was used to determine whether age, sex, and relative CBV were associated with an adverse event (progressive disease or death). RESULTS: Values for the mean relative CBV for patients according to each clinical response were as follows: 1.41 +/- 0.13 (standard deviation) for complete response (n = 4), 2.36 +/- 1.78 for stable disease (n = 41), 4.84 +/- 3.32 for progressive disease (n = 130), and 3.82 +/- 1.93 for death (n = 14). Kaplan-Meier estimates of median time to progression in days indicated that patients with a relative CBV of less than 1.75 had a median time to progression of 3585 days, whereas patients with a relative CBV of more than 1.75 had a time to progression of 265 days. Age and relative CBV were also independent predictors for clinical outcome. CONCLUSION: Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging can be used to predict median time to progression in patients with gliomas, independent of pathologic findings. Patients who have HGGs and LGGs with a high relative CBV (>1.75) have a significantly more rapid time to progression than do patients who have gliomas with a low relative CBV
PMCID:3774106
PMID: 18349315
ISSN: 1527-1315
CID: 91375

Predicting grade of cerebral glioma using vascular-space occupancy MR imaging

Lu, H; Pollack, E; Young, R; Babb, J S; Johnson, G; Zagzag, D; Carson, R; Jensen, J H; Helpern, J A; Law, M
BACKGROUND AND PURPOSE: MR imaging can measure tissue perfusion and the integrity of the blood-brain barrier. We hypothesize that a combined measure of cerebral blood volume and vascular permeability using vascular-space occupancy (VASO) MR imaging, a recently developed imaging technique, is of diagnostic value for predicting tumor grade. MATERIALS AND METHODS: Thirty-nine patients (9 World Health Organization [WHO] grade II, 20 grade III, and 10 grade IV as determined by histopathologic assessment) were examined using VASO MR imaging, and regions-of-interest analysis was performed in tumoral regions, as well as in regions contralateral to the tumor. A Mann-Whitney test was conducted on the resulting VASO indices for a pairwise comparison across tumor grades. Nominal logistic regression was used to evaluate the use of VASO parameters for predicting group membership (by the percentage of correct classifications). RESULTS: The ratio between tumor side and contralateral side, VASO(Ratio), showed significant differences in all 3 of the pairwise comparisons (P < .01). VASO values in the tumoral regions, VASO(Tumor), showed significant difference between grade II and III and between II and IV but not between III and IV. Both VASO(Tumor) and VASO(Ratio) were found to be significant predictors of tumor grade, giving diagnostic accuracies of 66.7% and 71.8%, respectively. When testing to discriminate grade II tumors from higher grade tumors, the areas under the receiver operating characteristic curve were found to be 0.974 and 0.985 for VASO(Tumor) and VASO(Ratio), respectively. CONCLUSION: VASO MR imaging can be used for noninvasive tumor grade prediction based on cerebral blood volume and vascular permeability. VASO is more effective in separating WHO grade II from higher grades than in separating grade III from grade IV
PMID: 17974612
ISSN: 1936-959x
CID: 78348

Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury

Miles, Laura; Grossman, Robert I; Johnson, Glyn; Babb, James S; Diller, Leonard; Inglese, Matilde
PRIMARY OBJECTIVE: To explore whether baseline diffusion tensor imaging (DTI) metrics are predictive of cognitive functioning 6 months post-injury in patients with mild traumatic brain injury (MTBI). RESEARCH DESIGN: Seventeen patients with MTBI and 29 sex- and age-matched healthy controls were studied. METHODS AND PROCEDURES: Participants underwent an MRI protocol including DTI, at an average of 4.0 (range: 1-10) days post-injury. Mean diffusivity (MD) and fractional anisotropy (FA) were measured in the following white matter (WM) regions: centra semiovale, the genu and the splenium of the corpus callosum and the posterior limb of the internal capsule. Participants underwent neuropsychological (NP) testing at baseline and at 6-month follow-up. Least squares regression analysis was used to evaluate the association of MD and FA with each NP test score at baseline and follow-up. MAIN OUTCOMES AND RESULTS: Compared to controls, average MD was significantly higher (p = 0.02) and average FA significantly lower (p = 0.0001) in MTBI patients. At the follow-up, there was a trend toward a significant association between baseline MD and response speed (r = -0.53, p = 0.087) and a positive correlation between baseline FA and Prioritization form B (r = 0.72, p = 0.003). CONCLUSIONS: DTI may provide short-term non-invasive predictive markers of cognitive functioning in patients with MTBI
PMID: 18240040
ISSN: 0269-9052
CID: 91954

Ventral striatal blood flow is altered by acute nicotine but not withdrawal from nicotine

Tanabe, Jody; Crowley, Thomas; Hutchison, Kent; Miller, David; Johnson, Glyn; Du, Yiping P; Zerbe, Gary; Freedman, Robert
Neural mechanisms underlying the reinforcing effects of nicotine and other drugs have been widely studied and are known to involve the ventral striatum, which is part of the mesocorticolimbic dopamine system. In contrast, mechanisms of nicotine withdrawal have received less attention although subjective withdrawal likely contributes to the difficulty of quitting. The goal of this study was to determine if nicotine withdrawal was associated with alterations of cerebral blood flow (CBF) in ventral striatum. Twelve smokers, moderately dependent on nicotine, underwent MR dynamic susceptibility contrast (DSC) imaging at baseline, after overnight withdrawal from nicotine, and after nicotine replacement. DSC images were used to calculate CBF in three regions of interest: ventral striatum, thalamus, and medial frontal cortex. Subjective withdrawal symptoms were measured at each time point. In spite of significant subjective withdrawal symptoms, there was no main effect of withdrawal on CBF in the three regions. However, there was a significant correlation between the increase in withdrawal symptoms and a reduction in thalamic CBF. In contrast to withdrawal, nicotine replacement significantly increased CBF in ventral striatum. Our findings are consistent with the known role of ventral striatum in drug reward. The lack of a main effect on withdrawal, but correlation of thalamic blood flow with withdrawal symptoms suggests that more complex mechanisms mediate the subjective features of the withdrawal state
PMCID:2856639
PMID: 17460613
ISSN: 0893-133x
CID: 96752

Statistical mapping of sound-evoked activity in the mouse auditory midbrain using Mn-enhanced MRI

Yu, Xin; Zou, Jing; Babb, James S; Johnson, Glyn; Sanes, Dan H; Turnbull, Daniel H
Manganese-enhanced MRI (MEMRI) has been developed to image brain activity in small animals, including normal and genetically modified mice. Here, we report the use of a MEMRI-based statistical parametric mapping method to analyze sound-evoked activity in the mouse auditory midbrain, the inferior colliculus (IC). Acoustic stimuli with defined frequency and amplitude components were shown to activate and enhance neuronal ensembles in the IC. These IC activity patterns were analyzed quantitatively using voxel-based statistical comparisons between groups of mice with or without sound stimulation. Repetitive 40-kHz pure tone stimulation significantly enhanced ventral IC regions, which was confirmed in the statistical maps showing active regions whose volumes increased in direct proportion to the amplitude of the sound stimuli (65 dB, 77 dB, and 89 dB peak sound pressure level). The peak values of the activity-dependent MEMRI signal enhancement also increased from 7% to 20% for the sound amplitudes employed. These results demonstrate that MEMRI statistical mapping can be used to analyze both the 3D spatial patterns and the magnitude of activity evoked by sound stimuli carrying different energy. This represents a significant advance in the development of MEMRI for quantitative and unbiased analysis of brain function in the deep brain nuclei of mice
PMCID:2473867
PMID: 17919926
ISSN: 1053-8119
CID: 74214