Try a new search

Format these results:

Searched for:

person:kleing06

in-biosketch:true

Total Results:

13


Morphine hyperalgesia in mice is unrelated to opioid activity, analgesia, or tolerance: evidence for multiple diverse hyperalgesic systems

Juni, Aaron; Klein, Gad; Kest, Benjamin
Hyperalgesia following chronic morphine treatment is thought to be a response to opioid receptor activation and analgesia and contribute to the development of analgesic tolerance. Here, the relationship between these variables was studied in mice tested for nociceptive sensitivity on the tail-withdrawal test during chronic infusion of various morphine doses. Hyperalgesic onset was preceded by dose-dependent analgesia except for the lowest morphine dose, which caused hyperalgesia 6 h after the start of infusion. Morphine ED50 values obtained at various infusion intervals demonstrated both analgesic tolerance in the absence of hyperalgesia and hyperalgesia in the absence of tolerance. Continuous opioid receptor antagonism using naltrexone pellets abolished analgesia during continuous morphine administration, transiently potentiated hyperalgesia, and revealed differences in hyperalgesic onset between morphine infusion doses. Acute injection of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated hyperalgesia in naltrexone-treated mice, demonstrating a role for this receptor in morphine hyperalgesia unrelated to its effects upon morphine analgesia. In mice where hyperalgesia subsided after continuous infusion of the highest morphine dose (i.e., hyperalgesic adaptation), hyperalgesia was restored after infusing the lower but not higher morphine dose. In addition, acute injection of morphine-3beta-glucoronide (M3G) caused hyperalgesia that was cross-adaptive with the lower morphine dose only. The data demonstrate that morphine hyperalgesia is independent of prior or concurrent opioid receptor activity or analgesia and is unrelated to analgesic tolerance. Furthermore, the lack of hyperalgesic cross-adaptation between high and low morphine doses, and their differential cross-adaptation with M3G hyperalgesia, also suggests distinct morphine dose-dependent hyperalgesic systems.
PMID: 16409995
ISSN: 0006-8993
CID: 5422172

Endogenous opiates and behavior: 2004

Bodnar, Richard J; Klein, Gad E
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
PMID: 16039752
ISSN: 0196-9781
CID: 5422162

Endogenous opiates and behavior: 2003

Bodnar, Richard J; Klein, Gad E
This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
PMID: 15572211
ISSN: 0196-9781
CID: 5422152