Try a new search

Format these results:

Searched for:

person:klinem02

in-biosketch:true

Total Results:

5


Deep Learning Diagnosis and Classification of Rotator Cuff Tears on Shoulder MRI

Lin, Dana J; Schwier, Michael; Geiger, Bernhard; Raithel, Esther; von Busch, Heinrich; Fritz, Jan; Kline, Mitchell; Brooks, Michael; Dunham, Kevin; Shukla, Mehool; Alaia, Erin F; Samim, Mohammad; Joshi, Vivek; Walter, William R; Ellermann, Jutta M; Ilaslan, Hakan; Rubin, David; Winalski, Carl S; Recht, Michael P
BACKGROUND:Detection of rotator cuff tears, a common cause of shoulder disability, can be time-consuming and subject to reader variability. Deep learning (DL) has the potential to increase radiologist accuracy and consistency. PURPOSE:The aim of this study was to develop a prototype DL model for detection and classification of rotator cuff tears on shoulder magnetic resonance imaging into no tear, partial-thickness tear, or full-thickness tear. MATERIALS AND METHODS:This Health Insurance Portability and Accountability Act-compliant, institutional review board-approved study included a total of 11,925 noncontrast shoulder magnetic resonance imaging scans from 2 institutions, with 11,405 for development and 520 dedicated for final testing. A DL ensemble algorithm was developed that used 4 series as input from each examination: fluid-sensitive sequences in 3 planes and a sagittal oblique T1-weighted sequence. Radiology reports served as ground truth for training with categories of no tear, partial tear, or full-thickness tear. A multireader study was conducted for the test set ground truth, which was determined by the majority vote of 3 readers per case. The ensemble comprised 4 parallel 3D ResNet50 convolutional neural network architectures trained via transfer learning and then adapted to the targeted domain. The final tear-type prediction was determined as the class with the highest probability, after averaging the class probabilities of the 4 individual models. RESULTS:The AUC overall for supraspinatus, infraspinatus, and subscapularis tendon tears was 0.93, 0.89, and 0.90, respectively. The model performed best for full-thickness supraspinatus, infraspinatus, and subscapularis tears with AUCs of 0.98, 0.99, and 0.95, respectively. Multisequence input demonstrated higher AUCs than single-sequence input for infraspinatus and subscapularis tendon tears, whereas coronal oblique fluid-sensitive and multisequence input showed similar AUCs for supraspinatus tendon tears. Model accuracy for tear types and overall accuracy were similar to that of the clinical readers. CONCLUSIONS:Deep learning diagnosis of rotator cuff tears is feasible with excellent diagnostic performance, particularly for full-thickness tears, with model accuracy similar to subspecialty-trained musculoskeletal radiologists.
PMID: 36728041
ISSN: 1536-0210
CID: 5502202

Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI

Johnson, Patricia M; Lin, Dana J; Zbontar, Jure; Zitnick, C Lawrence; Sriram, Anuroop; Muckley, Matthew; Babb, James S; Kline, Mitchell; Ciavarra, Gina; Alaia, Erin; Samim, Mohammad; Walter, William R; Calderon, Liz; Pock, Thomas; Sodickson, Daniel K; Recht, Michael P; Knoll, Florian
Background MRI is a powerful diagnostic tool with a long acquisition time. Recently, deep learning (DL) methods have provided accelerated high-quality image reconstructions from undersampled data, but it is unclear if DL image reconstruction can be reliably translated to everyday clinical practice. Purpose To determine the diagnostic equivalence of prospectively accelerated DL-reconstructed knee MRI compared with conventional accelerated MRI for evaluating internal derangement of the knee in a clinical setting. Materials and Methods A DL reconstruction model was trained with images from 298 clinical 3-T knee examinations. In a prospective analysis, patients clinically referred for knee MRI underwent a conventional accelerated knee MRI protocol at 3 T followed by an accelerated DL protocol between January 2020 and February 2021. The equivalence of the DL reconstruction of the images relative to the conventional images for the detection of an abnormality was assessed in terms of interchangeability. Each examination was reviewed by six musculoskeletal radiologists. Analyses pertaining to the detection of meniscal or ligament tears and bone marrow or cartilage abnormalities were based on four-point ordinal scores for the likelihood of an abnormality. Additionally, the protocols were compared with use of four-point ordinal scores for each aspect of image quality: overall image quality, presence of artifacts, sharpness, and signal-to-noise ratio. Results A total of 170 participants (mean age ± SD, 45 years ± 16; 76 men) were evaluated. The DL-reconstructed images were determined to be of diagnostic equivalence with the conventional images for detection of abnormalities. The overall image quality score, averaged over six readers, was significantly better (P < .001) for the DL than for the conventional images. Conclusion In a clinical setting, deep learning reconstruction enabled a nearly twofold reduction in scan time for a knee MRI and was diagnostically equivalent with the conventional protocol. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Roemer in this issue.
PMID: 36648347
ISSN: 1527-1315
CID: 5462122

Using Deep Learning to Accelerate Knee MRI at 3T: Results of an Interchangeability Study

Recht, Michael P; Zbontar, Jure; Sodickson, Daniel K; Knoll, Florian; Yakubova, Nafissa; Sriram, Anuroop; Murrell, Tullie; Defazio, Aaron; Rabbat, Michael; Rybak, Leon; Kline, Mitchell; Ciavarra, Gina; Alaia, Erin F; Samim, Mohammad; Walter, William R; Lin, Dana; Lui, Yvonne W; Muckley, Matthew; Huang, Zhengnan; Johnson, Patricia; Stern, Ruben; Zitnick, C Lawrence
OBJECTIVE:Deep Learning (DL) image reconstruction has the potential to disrupt the current state of MR imaging by significantly decreasing the time required for MR exams. Our goal was to use DL to accelerate MR imaging in order to allow a 5-minute comprehensive examination of the knee, without compromising image quality or diagnostic accuracy. METHODS:A DL model for image reconstruction using a variational network was optimized. The model was trained using dedicated multi-sequence training, in which a single reconstruction model was trained with data from multiple sequences with different contrast and orientations. Following training, data from 108 patients were retrospectively undersampled in a manner that would correspond with a net 3.49-fold acceleration of fully-sampled data acquisition and 1.88-fold acceleration compared to our standard two-fold accelerated parallel acquisition. An interchangeability study was performed, in which the ability of 6 readers to detect internal derangement of the knee was compared for the clinical and DL-accelerated images. RESULTS:The study demonstrated a high degree of interchangeability between standard and DL-accelerated images. In particular, results showed that interchanging the sequences would result in discordant clinical opinions no more than 4% of the time for any feature evaluated. Moreover, the accelerated sequence was judged by all six readers to have better quality than the clinical sequence. CONCLUSIONS:An optimized DL model allowed for acceleration of knee images which performed interchangeably with standard images for the detection of internal derangement of the knee. Importantly, readers preferred the quality of accelerated images to that of standard clinical images.
PMID: 32755163
ISSN: 1546-3141
CID: 4557132

MRI evaluation of costal cartilage injuries

Subhas, Naveen; Kline, Mitchell J; Moskal, Michael J; White, Lawrence M; Recht, Michael P
OBJECTIVE: The usefulness of MRI in costal cartilage injuries has not been shown. We report the MRI findings in a series of patients with costal cartilage injuries. CONCLUSION: MRI can be a useful technique in the diagnosis of costal cartilage injuries
PMID: 18562735
ISSN: 1546-3141
CID: 87070

Bare area of the glenoid: magnetic resonance appearance with arthroscopic correlation

Ly, Justin Q; Bui-Mansfield, Liem T; Kline, Mitchell J; DeBerardino, Thomas M; Taylor, Dean C
OBJECTIVE: To review the radiologic findings of a rarely reported focal area of acquired cartilage thinning located at the center of the glenoid fossa. METHODS: We retrospectively reviewed the medical records of 3 patients, each possessing a bare area of the glenoid detected on magnetic resonance (MR) imaging. A literature search was performed to obtain the most current information regarding this uncommon entity. RESULTS: Magnetic resonance imaging of the glenoid demonstrated a smoothly marginated subcentimeter area of thinning of the central articular cartilage containing hyperintense joint fluid or contrast in the case with MR arthrography. Arthroscopic correlation was obtained in a single case. CONCLUSIONS: The bare area of the glenoid is an acquired cartilage defect located at the center of the glenoid articular surface. Characteristic findings can be seen on MR imaging. Care should be taken not to mistake this acquired condition for posttraumatic defects of the glenoid articular cartilage.
PMID: 15091128
ISSN: 0363-8715
CID: 2244022