Try a new search

Format these results:

Searched for:

person:kreibg01

in-biosketch:yes

Total Results:

141


Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum

Fu J; Kreibich G
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48
PMID: 10660554
ISSN: 0021-9258
CID: 8554

Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: the role of N-linked glycans and the unfolded protein response

de Virgilio M; Kitzmuller C; Schwaiger E; Klein M; Kreibich G; Ivessa NE
We are studying endoplasmic reticulum-associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI(332), containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI(332) was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of approximately 45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI(332) in which the single used N-glycosylation consensus site had been removed (RI(332)-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI(332) degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI(332) to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI(332). After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI(332) and RI(332)-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI(332) and RI(332)-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI(332) was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives
PMCID:25743
PMID: 10588643
ISSN: 1059-1524
CID: 18409

Unregulated exposure of the ribosomal M-site caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex

Moller I; Beatrix B; Kreibich G; Sakai H; Lauring B; Wiedmann M
Nascent polypeptide associated complex (NAC) interacts with nascent polypeptides emerging from ribosomes. Both signal recognition particle (SRP) and NAC work together to ensure specificity in co-translational targeting by competing for binding to the ribosomal membrane attachment site. While SRP selects signal-containing ribosomes for targeting, NAC prevents targeting of signal peptide-less nascent chains to the endoplasmic reticulum membrane. Here we show that the ribosome binding that occurs in NAC's absence delivers signalless nascent chains to the Sec61 complex, underscoring the danger of unregulated exposure of the ribosomal M-site. Recently, the idea that NAC prevents ribosome binding has been challenged. By carefully examining the physiologic NAC concentration in a variety of tissues from different species we here demonstrate that the discrepancy resulted from subphysiologic NAC concentrations
PMID: 9877153
ISSN: 0014-5793
CID: 18410

A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes

Moller I; Jung M; Beatrix B; Levy R; Kreibich G; Zimmermann R; Wiedmann M; Lauring B
For proteins to enter the secretory pathway, the membrane attachment site (M-site) on ribosomes must bind cotranslationally to the Sec61 complex present in the endoplasmic reticulum membrane. The signal recognition particle (SRP) and its receptor (SR) are required for targeting, and the nascent polypeptide associated complex (NAC) prevents inappropriate targeting of nonsecretory nascent chains. In the absence of NAC, any ribosome, regardless of the polypeptide being synthesized, binds to the endoplasmic reticulum membrane, and even nonsecretory proteins are translocated across the endoplasmic reticulum membrane. By occupying the M-site, NAC prevents all ribosome binding unless a signal peptide and SRP are present. The mechanism by which SRP overcomes the NAC block is unknown. We show that signal peptide-bound SRP occupies the M-site and therefore keeps it free of NAC. To expose the M-site and permit ribosome binding, SR can pull SRP away from the M-site without prior release of SRP from the signal peptide
PMCID:24835
PMID: 9811816
ISSN: 0027-8424
CID: 18411

DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex

Sanjay A; Fu J; Kreibich G
Asparagine-linked glycosylation is a highly conserved protein modification reaction that occurs in all eukaryotic organisms. The oligosaccharyltransferase (OST), which has its active site exposed on the luminal face of the endoplasmic reticulum (ER), catalyzes the transfer of preassembled high mannose oligosaccharides onto certain asparagine residues of nascent polypeptides. The mammalian OST complex was initially thought to be composed of three transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Most recently, a small integral membrane protein of 12 kDa called DAD1 has been identified as an additional member of the mammalian OST complex. A point mutation in the DAD1 gene is responsible for the temperature-sensitive phenotype of a baby hamster kidney-derived cell line (tsBN7) that undergoes apoptosis at the non-permissive temperature. Furthermore, the mutant protein DAD1 is not detectable in tsBN7 cells 6 h after shifting the cells to the non-permissive temperature. This temperature-sensitive cell line offered unique opportunities to study the effects caused by the loss of one OST subunit on the other three subunits and also on N-linked glycosylation. Western blot analysis of cell lysates showed that after 6 h at the non-permissive temperature, steady-state levels of the ribophorins were reduced by about 50%, and OST48 was barely detectable. On the other hand, steady-state levels of other components of the rough ER, such as the alpha-subunits of the TRAP (translocon-associated membrane protein) and the Sec61 complex, which are components of the translocation apparatus, are not affected by the instability of the OST subunits. Furthermore, N-glycosylation of the ribophorins was seriously affected 6 h after shifting the cells to the non-permissive temperature, and after 12 h they were synthesized only in the non-glycosylated form. As may be expected, this defect in the OST complex at the non-permissive temperature caused also the underglycosylation of a secretory glycoprotein. We concluded that degradation of DAD1 at the non-permissive temperature not only affects the stability of OST48 and the ribophorins but also results in the functional inactivation of the OST complex
PMID: 9748289
ISSN: 0021-9258
CID: 12069

The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine [see comments] [Comment]

Kerr DE; Liang F; Bondioli KR; Zhao H; Kreibich G; Wall RJ; Sun TT
Uroplakin genes are expressed in a bladder-specific and differentiation-dependent fashion. Using a 3.6-kb promoter of mouse uroplakin II gene, we have generated transgenic mice that express human growth hormone (hGH) in their bladder epithelium, resulting in its secretion into the urine at 100-500 ng/ml. The levels of urine hGH concentration remain constant for longer than 8 months. hGH is present as aggregates mostly in the uroplakin-delivering cytoplasmic vesicles that are targeted to fuse with the apical surface. Using the bladder as a bioreactor offers unique advantages, including the utility of all animals throughout their lives. Using urine, which contains little protein and lipid, as a starting material facilitates recombinant protein purification
PMID: 9447598
ISSN: 1087-0156
CID: 8368

Interactions among subunits of the oligosaccharyltransferase complex

Fu J; Ren M; Kreibich G
The mammalian oligosaccharyltransferase (OST) is an oligomeric complex composed of three membrane proteins of the endoplasmic reticulum: ribophorin I (RI), ribophorin II (RII), and OST48. In addition, sequence homology between the Ost2 subunit of the yeast OST complex and Dad1 (defender against apoptotic death) suggests that Dad1 may represent a fourth subunit of the mammalian OST complex. In attempts to elucidate the structural organization of this complex, we have studied the interactions among its subunits. Using the yeast two-hybrid system, we have shown that the luminal domains of RI and RII (RIL and RIIL, respectively) interacted with the luminal domain of OST48 (OST48L), but no direct interaction was observed between RIL and RIIL. These results were confirmed by biochemical assays. Deletion analyses using the yeast two-hybrid system showed that subdomain of RIL or RIIL adjacent to the respective transmembrane domains interacted with OST48L. Of the three equal length subdomains of OST48L, the one at the N terminus and the one next to the transmembrane domain interacted with RIL. None of these three subdomains of OST48L interacted with RIIL. The yeast two-hybrid assay also revealed affinity between the cytoplasmically located N-terminal region of Dad1 and the short cytoplasmic tail of OST48, thus placing Dad1 firmly into the OST complex. In addition, we found a homotypic interaction between the cytoplasmic domains of RI, which may play a role in the formation of the oligomeric array formed by components of the translocation machinery
PMID: 9368036
ISSN: 0021-9258
CID: 8251

Functional protein prenylation is required for the brefeldin A-dependent retrograde transport from the Golgi apparatus to the endoplasmic reticulum

Ivessa NE; Gravotta D; De Lemos-Chiarandini C; Kreibich G
In cells exposed to brefeldin A (BFA), enzymes of the Golgi apparatus are redistributed to the endoplasmic reticulum (ER) by retrograde membrane flow, where they may cause modifications on resident ER proteins. We have used a truncated form of the rough ER-specific type I transmembrane glycoprotein ribophorin I as a probe to detect Golgi glycosyltransferases relocated to the ER in a BFA-dependent fashion. This polypeptide (RI332) comprises the 332 amino-terminal amino acids of ribophorin I and behaves like a luminal ER protein when expressed in HeLa cells. Upon treatment of the cells with BFA, RI332 becomes quantitatively O-glycosylated by Golgi glycosyltransferases that are transported back to the ER. Here we demonstrate that pretreatment of the cells with lovastatin, an inhibitor of HMG-CoA reductase, abrogates this modification and that mevalonate, the product formed in the step inhibited by the drug, is able to counteract the effect of lovastatin. We also show by immunofluorescence using mannosidase II as a Golgi marker that the BFA-induced retrograde transport of Golgi enzymes is blocked by lovastatin, although electron microscopy indicates that BFA causes disassembly of the Golgi apparatus into swollen vesicles and tubules. Our observations support the role of a prenylated protein, such as the geranylgeranylated small G protein Rab6, in the retrograde transport from the Golgi apparatus to the ER, since lovastatin acts by inhibiting its prenylation
PMID: 9252408
ISSN: 0021-9258
CID: 8250

Incomplete endoplasmic reticulum (ER) retention in immature thymocytes as revealed by surface expression of "ER-resident" molecular chaperones

Wiest DL; Bhandoola A; Punt J; Kreibich G; McKean D; Singer A
The folding and assembly of nascent proteins in the endoplasmic reticulum (ER) is assisted by molecular chaperones that are themselves retained within the ER. We now report that a number of different ER proteins, including molecular chaperones, are selectively expressed on the surface of immature thymocytes, but their surface expression is extinguished upon further differentiation. Escape from the ER is only possible for newly synthesized ER proteins before they become permanently retained. Thus, the cellular process of ER retention is incomplete in immature thymocytes and provides an explanation for surface expression of partial receptor complexes that transduce differentiative signals during thymic development
PMCID:20012
PMID: 9050874
ISSN: 0027-8424
CID: 18412

Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153)

Wang XZ; Lawson B; Brewer JW; Zinszner H; Sanjay A; Mi LJ; Boorstein R; Kreibich G; Hendershot LM; Ron D
The gene encoding C/EBP-homologous protein (CHOP), also known as growth arrest and DNA-damage-inducible gene 153 (GADD153), is activated by agents that adversely affect the function of the endoplasmic reticulum (ER). Because of the pleiotropic effects of such agents on other cellular processes, the role of ER stress in inducing CHOP gene expression has remained unclear. We find that cells with conditional (temperature-sensitive) defects in protein glycosylation (CHO K12 and BHK tsBN7) induce CHOP when cultured at the nonpermissive temperature. In addition, cells that are defective in initiating the ER stress response, because of overexpression of an exogenous ER chaperone, BiP/GRP78, exhibit attenuated inducibility of CHOP. Surprisingly, attenuated induction of CHOP was also noted in BiP-overexpressing cells treated with methyl methanesulfonate, an agent thought to activate CHOP by causing DNA damage. The roles of DNA damage and growth arrest in the induction of CHOP were therefore reexamined. Induction of growth arrest by culture to confluence or treatment with the enzymatic inhibitor N-(phosphonacetyl)-L-aspartate did not induce CHOP. Furthermore, both a DNA-damage-causing nucleoside analog (5-hydroxymethyl-2'-deoxyuridine) and UV light alone did not induce CHOP. These results suggest that CHOP is more responsive to ER stress than to growth arrest or DNA damage and indicate a potential role for CHOP in linking stress in the ER to alterations in gene expression
PMCID:231426
PMID: 8754828
ISSN: 0270-7306
CID: 12576