Try a new search

Format these results:

Searched for:

person:kreibg01

Total Results:

163


Assembly of Urothelial Plaques: Tetraspanin Function in Membrane Protein Trafficking

Hu, Chih-Chi Andrew; Liang, Feng-Xia; Zhou, Ge; Tu, Liyu; Tang, Chih-Hang Anthony; Zhou, Jessica; Kreibich, Gert; Sun, Tung-Tien
Monitoring Editor: Jeffrey Brodsky The apical surface of mammalian urothelium is covered by 16-nm protein particles packed hexagonally to form 2D crystals of asymmetric unit membranes (AUM) that contribute to the remarkable permeability barrier function of the urinary bladder. We have shown previously that bovine AUMs contain four major integral membrane proteins, i.e., uroplakins Ia, Ib, II and IIIa, and that UPIa and Ib (both tetraspanins) form heterodimers with UPII and IIIa, respectively. Using a panel of antibodies recognizing different conformational states of uroplakins, we demonstrate that the UPIa-dependent, furin-mediated cleavage of the prosequence of UPII leads to global conformational changes in mature UPII, and that UPIb also induces conformational changes in its partner UPIIIa. We further demonstrate that tetraspanins CD9, CD81 and CD82 can stabilize their partner protein CD4. These results indicate that tetraspanin uroplakins, and some other tetraspanin proteins, can induce conformational changes leading to the ER-exit, stabilization and cell surface expression of their associated, single-transmembrane-domained partner proteins, and thus can function as 'maturation-facilitators.' We propose a model of AUM assembly in which conformational changes in integral membrane proteins induced by uroplakin interactions, differentiation-dependent glycosylation and the removal of the prosequence of UPII play roles in regulating the assembly of uroplakins to form AUM
PMCID:1196309
PMID: 15958488
ISSN: 1059-1524
CID: 56078

Interaction of microtubule-associated protein-2 and p63: a new link between microtubules and rough endoplasmic reticulum membranes in neurons

Farah, Carole Abi; Liazoghli, Dalinda; Perreault, Sebastien; Desjardins, Mylene; Guimont, Alain; Anton, Angela; Lauzon, Michel; Kreibich, Gert; Paiement, Jacques; Leclerc, Nicole
Neurons are polarized cells presenting two distinct compartments, dendrites and an axon. Dendrites can be distinguished from the axon by the presence of rough endoplasmic reticulum (RER). The mechanism by which the structure and distribution of the RER is maintained in these cells is poorly understood. In the present study, we investigated the role of the dendritic microtubule-associated protein-2 (MAP2) in the RER membrane positioning by comparing their distribution in brain subcellular fractions and in primary hippocampal cells and by examining the MAP2-microtubule interaction with RER membranes in vitro. Subcellular fractionation of rat brain revealed a high MAP2 content in a subfraction enriched with the endoplasmic reticulum markers ribophorin and p63. Electron microscope morphometry confirmed the enrichment of this subfraction with RER membranes. In cultured hippocampal neurons, MAP2 and p63 were found to concomitantly compartmentalize to the dendritic processes during neuronal differentiation. Protein blot overlays using purified MAP2c protein revealed its interaction with p63, and immunoprecipitation experiments performed in HeLa cells showed that this interaction involves the projection domain of MAP2. In an in vitro reconstitution assay, MAP2-containing microtubules were observed to bind to RER membranes in contrast to microtubules containing tau, the axonal MAP. This binding of MAP2c microtubules was reduced when an anti-p63 antibody was added to the assay. The present results suggest that MAP2 is involved in the association of RER membranes with microtubules and thereby could participate in the differential distribution of RER membranes within a neuron
PMID: 15623521
ISSN: 0021-9258
CID: 95764

Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder?

Riedel, Ina; Liang, Feng-Xia; Deng, Fang-Ming; Tu, Liyu; Kreibich, Gert; Wu, Xue-Ru; Sun, Tung-Tien; Hergt, Michaela; Moll, Roland
Urothelial umbrella cells are characterized by apical, rigid membrane plaques, which contain four major uroplakin proteins (UP Ia, Ib, II and III) forming UPIa/UPII and UPIb/UPIII pairs. These integral membrane proteins are thought to play an important role in maintaining the physical integrity and the permeability barrier function of the urothelium. We asked whether the four uroplakins always coexpress in the entire human lower urinary tract. We stained immunohistochemically (ABC-peroxidase method) paraffin sections of normal human ureter (n = 18) and urinary bladder (n = 10) using rabbit antibodies against UPIa, UPIb, UPII and UPIII; a recently raised mouse monoclonal antibody (MAb), AU1, and two new MAbs, AU2 and AU3, all against UPIII; and mouse MAbs against umbrella cell-associated cytokeratins CK18 and CK20. Immunoblotting showed that AU1, AU2 and AU3 antibodies all recognized the N-terminal extracellular domain of bovine UPIII. By immunohistochemistry, we found that in 15/18 cases of human ureter, but in only 2/10 cases of bladder, groups of normal-looking, CK18-positive umbrella cells lacked both UPIII and UPIb immunostaining. The UPIb/UPIII-negative cells showed either normal or reduced amounts of UPIa and UPII staining. These data were confirmed by double immunofluorescence microscopy. The distribution of the UPIb/UPIII-negative umbrella cells was not correlated with localized urothelial proliferation (Ki-67 staining) or with the distribution pattern of CK20. Similar heterogeneities were observed in bovine but not in mouse ureter. We provide the first evidence that urothelial umbrella cells are heterogeneous as some normal-looking umbrella cells can possess only one, instead of two, uroplakin pairs. This heterogeneity seems more prominent in the urothelium of human ureter than that of bladder. This finding may indicate that ureter urothelium is intrinsically different from bladder urothelium. Alternatively, a single lineage of urothelium may exhibit different phenotypes resulting from extrinsic modulations due to distinct mesenchymal influence and different degrees of pressure and stretch in bladder versus ureter. Additional studies are needed to distinguish these two possibilities and to elucidate the physiological and pathological significance of the observed urothelial and uroplakin heterogeneity
PMID: 15819416
ISSN: 0171-9335
CID: 51032

Tetraspanin uroplakins Ia and Ib interact and stabilize their partner uroplakins II and III [Meeting Abstract]

Hu, CA; Liang, F; Zhou, G; Tu, L; Kreibich, G; Sun, T
ISI:000224648802446
ISSN: 1059-1524
CID: 50423

Organization of translocon complexes in ER membranes

Nikonov, A V; Kreibich, G
Protein translocation in the ER (endoplasmic reticulum) and N-glycosylation are fundamental processes essential for the normal functioning of eukaryotic cells. They are the initial steps in the intracellular pathway that are followed by secretory proteins and membrane proteins of the endomembrane system and the plasma membrane. The translocation and concurrent N-glycosylation of these proteins take place on a large molecular machine, the TC (translocon complex), which is associated with membrane-bound polysomes. Segregation of TCs into a differentiated domain of the ER, the rough ER, may increase the efficiency of protein synthesis on membrane-bound polysomes. Our research is concerned with the assembly, functional organization and dynamics of the TCs in the ER, and their contribution to the functioning and the morphological appearance of this organelle. We hypothesize that the TCs form higher-order structures defining the rough domain of the ER. These structures, which are immobilized or diffuse slowly in the plain of the ER membrane, may be formed and stabilized by mRNAs interconnecting the TCs, by cytoskeletal elements and/or by hypothetical proteins that form links between the TCs. We have established the M3/18 cell line, which expresses the GFP (green fluorescent protein)-Dad1 fusion protein quantitatively and functionally incorporated into the OST (oligosaccharyltransferase). GFP-Dad1 can be used as a reporter molecule for the lateral mobility of the TCs since the OST is tightly associated with the complex. As determined by FRAP (fluorescence recovery after photobleaching), the lateral mobility of GFP-Dad1-tagged TCs was much more restricted than expected from the estimated size of the TC and can be affected by the functional state of the TCs. Currently, we are studying the possible involvement of cytoskeletal elements in the organization of the TCs. Our data suggest that microtubules also play a role in the immobilization of the TCs
PMID: 14641036
ISSN: 0300-5127
CID: 44807

Rab27b is associated with fusiform vesicles and may be involved in targeting uroplakins to urothelial apical membranes

Chen, Yanru; Guo, Xuemei; Deng, Fang-Ming; Liang, Feng-Xia; Sun, Wenyu; Ren, Mindong; Izumi, Tetsuro; Sabatini, David D; Sun, Tung-Tien; Kreibich, Gert
The terminally differentiated umbrella cells of bladder epithelium contain unique cytoplasmic organelles, the fusiform vesicles, which deliver preassembled crystalline arrays of uroplakin proteins to the apical cell surface of urothelial umbrella cells. We have investigated the possible role of Rab proteins in this delivery process, and found Rab27b to be expressed at an extraordinary high level (0.1% of total protein) in urothelium, whereas Rab27b levels were greatly reduced (to <5% of normal urothelium) in cultured urothelial cells, which synthesized only small amounts of uroplakins and failed to form fusiform vesicles. Immuno-electron microscopy showed that Rab27b was associated with the cytoplasmic face of the fusiform vesicles, but not with that of the apical plasma membrane. The association of Rab27b with fusiform vesicles and its differentiation-dependent expression suggest that this Rab protein plays a role in regulating the delivery of fusiform vesicles to the apical plasma membrane of umbrella cells
PMCID:283537
PMID: 14625374
ISSN: 0027-8424
CID: 42018

Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex

Nilsson, IngMarie; Kelleher, Daniel J; Miao, Yiwei; Shao, Yuanlong; Kreibich, Gert; Gilmore, Reid; von Heijne, Gunnar; Johnson, Arthur E
In eukaryotic cells, polypeptides are N glycosylated after passing through the membrane of the ER into the ER lumen. This modification is effected cotranslationally by the multimeric oligosaccharyltransferase (OST) enzyme. Here, we report the first cross-linking of an OST subunit to a nascent chain that is undergoing translocation through, or integration into, the ER membrane. A photoreactive probe was incorporated into a nascent chain using a modified Lys-tRNA and was positioned in a cryptic glycosylation site (-Q-K-T- instead of -N-K-T-) in the nascent chain. When translocation intermediates with nascent chains of increasing length were irradiated, nascent chain photocross-linking to translocon components, Sec61alpha and TRAM, was replaced by efficient photocross-linking solely to a protein identified by immunoprecipitation as the STT3 subunit of the OST. No cross-linking was observed in the absence of a cryptic sequence or in the presence of a competitive peptide substrate of the OST. As no significant nascent chain photocross-linking to other OST subunits was detected in these fully assembled translocation and integration intermediates, our results strongly indicate that the nascent chain portion of the OST active site is located in STT3
PMCID:2199356
PMID: 12756234
ISSN: 0021-9525
CID: 48156

Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum

Tu, Liyu; Sun, Tung-Tien; Kreibich, Gert
Much of the lower urinary tract, including the bladder, is lined by a stratified urothelium forming a highly differentiated, superficial umbrella cell layer. The apical plasma membrane as well as abundant cytoplasmic fusiform vesicles of the umbrella cells is covered by two-dimensional crystals that are formed by four membrane proteins named uroplakins (UPs) Ia, Ib, II, and III. UPs are synthesized on membrane-bound polysomes, and after several co- and posttranslational modifications they assemble into planar crystals in a post-Golgi vesicular compartment. Distension of the bladder may cause fusiform vesicles to fuse with the apical plasma membrane. We have investigated the early stages of uroplakin assembly by expressing the four uroplakins in 293T cells. Transfection experiments showed that, when expressed individually, only UPIb can exit from the endoplasmic reticulum (ER) and move to the plasma membrane, whereas UPII and UPIII reach the plasma membrane only when they form heterodimeric complexes with UPIa and UPIb, respectively. Heterodimer formation in the ER was confirmed by pulse-chase experiment followed by coimmunoprecipitation. Our results indicate that the initial building blocks for the assembly of crystalline uroplakin plaques are heterodimeric uroplakin complexes that form in the ER
PMCID:138628
PMID: 12475947
ISSN: 1059-1524
CID: 34613

Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly

Deng, Fang-Ming; Liang, Feng-Xia; Tu, Liyu; Resing, Katheryn A; Hu, Ping; Supino, Mark; Hu, Chih-Chi Andrew; Zhou, Ge; Ding, Mingxiao; Kreibich, Gert; Sun, Tung-Tien
Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly
PMCID:2173100
PMID: 12446744
ISSN: 0021-9525
CID: 33060

Cholesterol and steroid synthesizing smooth endoplasmic reticulum of adrenocortical cells contains high levels of translocation apparatus proteins

Black, V H; Sanjay, A; van Leyen, K; Moeller, I; Lauring, B; Kreibich, G
Steroid-secreting cells possess abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. In this study we demonstrate that adrenal smooth microsomal subfractions enriched in these membranes also possess high levels of proteins belonging to the translocation apparatus, proteins previously assumed to be confined to morphologically identifiable rough endoplasmic reticulum (RER). We further demonstrate that these smooth microsomal subfractions are capable of effecting the functions of these protein complexes: co-translational translocation, signal peptide cleavage and N-glycosylation of newly synthesized polypeptides. We hypothesize that these elements participate in regulating the levels of ER-targeted membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally-regulated manner
PMID: 12530645
ISSN: 0743-5800
CID: 34612