Try a new search

Format these results:

Searched for:

person:krogsm01

in-biosketch:yes

Total Results:

74


Author Correction: Molecular mechanism of phosphopeptide neoantigen immunogenicity

Patskovsky, Yury; Natarajan, Aswin; Patskovska, Larysa; Nyovanie, Samantha; Joshi, Bishnu; Morin, Benjamin; Brittsan, Christine; Huber, Olivia; Gordon, Samuel; Michelet, Xavier; Schmitzberger, Florian; Stein, Robert B; Findeis, Mark A; Hurwitz, Andy; Van Dijk, Marc; Chantzoura, Eleni; Yague, Alvaro S; Pollack Smith, Daniel; Buell, Jennifer S; Underwood, Dennis; Krogsgaard, Michelle
PMID: 37500629
ISSN: 2041-1723
CID: 5618892

Catch bond models may explain how force amplifies TCR signaling and antigen discrimination

Choi, Hyun-Kyu; Cong, Peiwen; Ge, Chenghao; Natarajan, Aswin; Liu, Baoyu; Zhang, Yong; Li, Kaitao; Rushdi, Muaz Nik; Chen, Wei; Lou, Jizhong; Krogsgaard, Michelle; Zhu, Cheng
The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.
PMCID:10163261
PMID: 37147290
ISSN: 2041-1723
CID: 5503182

Safety and effectiveness of combination versus monotherapy with immune checkpoint inhibitors in patients with preexisting autoimmune diseases

Reid, Pankti; Sandigursky, Sabina; Song, Juhee; Lopez-Olivo, Maria A.; Safa, Houssein; Cytryn, Samuel; Efuni, Elizaveta; Buni, Maryam; Pavlick, Anna; Krogsgaard, Michelle; Abu-Shawer, Osama; Altan, Mehmet; Weber, Jeffrey S.; Rahma, Osama E.; Suarez-Almazor, Maria E.; Diab, Adi; Abdel-Wahab, Noha
Patients with preexisting autoimmune disease (pAID) are generally excluded from clinical trials for immune checkpoint inhibitors (ICIs) for cancer due to concern of flaring pAID. In this multi-center, retrospective observational study, we compared safety of ICI combination (two ICI agents) versus monotherapy in cancer patients with pAIDs. The primary outcome was time to AEs (immune-related adverse events (irAEs) and/or pAID flares), with progression-free survival (PFS) and overall survival as secondary outcomes. Sixty-four of 133 patients (48%) received ICI combination and 69 (52%) monotherapy. Most had melanoma (32%) and lung cancer (31%). Most common pAIDs were rheumatic (28%) and dermatologic (23%). Over a median follow-up of 15 months (95%CI, 11-18 mo), the cumulative incidence of any-grade irAEs was higher for combination compared to monotherapy (subdistribution hazard ratio (sHR) 2.27, 95%CI 1.35"“3.82). No statistically significant difference was observed in high-grade irAEs (sHR 2.31 (0.95"“5.66), P =.054) or the cumulative incidence of pAID flares. There was no statistically significant difference for melanoma PFS between combination versus monotherapy (23.2 vs. 17.1mo, P =.53). The combination group was more likely to discontinue or hold ICI, but > 50% of the combination group was still able to continue ICI therapy. No treatment-related deaths occurred. In our cohort with pAIDs, patients had a tolerable toxicity profile with ICI combination therapy. Our results support the use of ICI combination if deemed necessary for cancer therapy in patients with pAIDs, since the ICI toxicities were comparable to monotherapy, able to be effectively managed and mostly did not require ICI interruption.
SCOPUS:85175548637
ISSN: 2162-4011
CID: 5616442

Safety and effectiveness of combination versus monotherapy with immune checkpoint inhibitors in patients with preexisting autoimmune diseases

Reid, Pankti; Sandigursky, Sabina; Song, Juhee; Lopez-Olivo, Maria A; Safa, Houssein; Cytryn, Samuel; Efuni, Elizaveta; Buni, Maryam; Pavlick, Anna; Krogsgaard, Michelle; Abu-Shawer, Osama; Altan, Mehmet; Weber, Jeffrey S; Rahma, Osama E; Suarez-Almazor, Maria E; Diab, Adi; Abdel-Wahab, Noha
Patients with preexisting autoimmune disease (pAID) are generally excluded from clinical trials for immune checkpoint inhibitors (ICIs) for cancer due to concern of flaring pAID. In this multi-center, retrospective observational study, we compared safety of ICI combination (two ICI agents) versus monotherapy in cancer patients with pAIDs. The primary outcome was time to AEs (immune-related adverse events (irAEs) and/or pAID flares), with progression-free survival (PFS) and overall survival as secondary outcomes. Sixty-four of 133 patients (48%) received ICI combination and 69 (52%) monotherapy. Most had melanoma (32%) and lung cancer (31%). Most common pAIDs were rheumatic (28%) and dermatologic (23%). Over a median follow-up of 15 months (95%CI, 11-18 mo), the cumulative incidence of any-grade irAEs was higher for combination compared to monotherapy (subdistribution hazard ratio (sHR) 2.27, 95%CI 1.35-3.82). No statistically significant difference was observed in high-grade irAEs (sHR 2.31 (0.95-5.66), P = .054) or the cumulative incidence of pAID flares. There was no statistically significant difference for melanoma PFS between combination versus monotherapy (23.2 vs. 17.1mo, P = .53). The combination group was more likely to discontinue or hold ICI, but > 50% of the combination group was still able to continue ICI therapy. No treatment-related deaths occurred. In our cohort with pAIDs, patients had a tolerable toxicity profile with ICI combination therapy. Our results support the use of ICI combination if deemed necessary for cancer therapy in patients with pAIDs, since the ICI toxicities were comparable to monotherapy, able to be effectively managed and mostly did not require ICI interruption.
PMCID:10732692
PMID: 38126033
ISSN: 2162-402x
CID: 5626492

Baseline Serum Autoantibody Signatures Predict Recurrence and Toxicity in Melanoma Patients Receiving Adjuvant Immune Checkpoint Blockade

Johannet, Paul; Liu, Wenke; Fenyo, David; Wind-Rotolo, Megan; Krogsgaard, Michelle; Mehnert, Janice M; Weber, Jeffrey S; Zhong, Judy; Osman, Iman
PURPOSE:Adjuvant immunotherapy produces durable benefit for patients with resected melanoma, but many develop recurrence and/or immune-related adverse events (irAE). We investigated whether baseline serum autoantibody (autoAb) signatures predicted recurrence and severe toxicity in patients treated with adjuvant nivolumab, ipilimumab, or ipilimumab plus nivolumab. EXPERIMENTAL DESIGN:This study included 950 patients: 565 from CheckMate 238 (408 ipilimumab versus 157 nivolumab) and 385 from CheckMate 915 (190 nivolumab versus 195 ipilimumab plus nivolumab). Serum autoAbs were profiled using the HuProt Human Proteome Microarray v4.0 (CDI Laboratories, Mayaguez, PR). Analysis of baseline differentially expressed autoAbs was followed by recurrence and severe toxicity signature building for each regimen, testing of the signatures, and additional independent validation for nivolumab using patients from CheckMate 915. RESULTS:In the nivolumab independent validation cohort, high recurrence score predicted significantly worse recurrence-free survival [RFS; adjusted HR (aHR), 3.60; 95% confidence interval (CI), 1.98-6.55], and outperformed a model composed of clinical variables including PD-L1 expression (P < 0.001). Severe toxicity score was a significant predictor of severe irAEs (aHR, 13.53; 95% CI, 2.59-86.65). In the ipilimumab test cohort, high recurrence score was associated with significantly worse RFS (aHR, 3.21; 95% CI, 1.38-7.45) and severe toxicity score significantly predicted severe irAEs (aHR, 11.04; 95% CI, 3.84-37.25). In the ipilimumab plus nivolumab test cohort, high autoAb recurrence score was associated with significantly worse RFS (aHR, 6.45; 95% CI, 1.48-28.02), and high severe toxicity score was significantly associated with severe irAEs (aHR, 23.44; 95% CI, 4.10-212.50). CONCLUSIONS:Baseline serum autoAb signatures predicted recurrence and severe toxicity in patients treated with adjuvant immunotherapy. Prospective testing of the signatures that include datasets with longer follow-up and rare but more severe toxicities will help determine their generalizability and potential clinical utility. See related commentary by Hassel and Luke, p. 3914.
PMID: 36106402
ISSN: 1557-3265
CID: 5335062

Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 2nd - 4th, 2021, Italy)

Ascierto, Paolo A; Agarwala, Sanjiv S; Blank, Christian; Caracò, Corrado; Carvajal, Richard D; Ernstoff, Marc S; Ferrone, Soldano; Fox, Bernard A; Gajewski, Thomas F; Garbe, Claus; Grob, Jean-Jacques; Hamid, Omid; Krogsgaard, Michelle; Lo, Roger S; Lund, Amanda W; Madonna, Gabriele; Michielin, Olivier; Neyns, Bart; Osman, Iman; Peters, Solange; Poulikakos, Poulikos I; Quezada, Sergio A; Reinfeld, Bradley; Zitvogel, Laurence; Puzanov, Igor; Thurin, Magdalena
Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.
PMCID:9440864
PMID: 36058945
ISSN: 1479-5876
CID: 5323262

Safety and Effectiveness of Immune Checkpoint Inhibitors Combination versus Single Agent Therapy in Patients with Pre-existing Autoimmune Diseases [Meeting Abstract]

Reid, P; Sandigursky, S; Lopez-Olivo, M A; Song, J; Safa, H; Cytryn, S; Buni, M; Pavlick, A; Krogsgaard, M; Abu-Shawer, O; Altan, M; Weber, J; Suarez-Almazor, M; Diab, A; Abdel-Wahab, N
Background/Purpose: Treatment with a combination of immune checkpoint inhibitors (ICI) has promising outcomes in many tumor types but carries higher adverse event risk than ICI monotherapy. Also, patients with pre-existing autoimmune disease (AID) have largely been excluded from ICI clinical trials due to concern for pre-existing AID flare or immune-related adverse events (irAEs). This is the first study to analyze safety and effectiveness of ICI combination versus monotherapy for this at-risk population.
Method(s): We conducted a multi-center retrospective study in patients with pre-existing AIDs receiving ICIs (i.e., antiprogrammed cell death protein 1 (PD-1) single-agent (monotherapy) or ICI combination). Primary endpoints included the time to occurrence of any-type ICI AE (irAE or AID flare), time to irAEs and time to AID flares in the presence of the competing risk of death with progression free survival (PFS, time to progression or death) and overall survival (OS) as secondary endpoints. We used Fine-Gray models and Cox regression models to investigate the factors associated with these endpoints.
Result(s): 133 patients with pre-existing AID who received ICIs were identified: 69 (52%) monotherapy and 64 (48%) combination (Table 1). About half the patients had melanoma (44%) and 25% had lung cancer. Rheumatic (34%) or dermatologic (22%) pre-existing AIDs were the most common. Most patients (95%) had controlled autoimmune disease at ICI start. Six of 7 patients with active AID at baseline experienced some AE. Patients receiving baseline DMARD(s) were more likely to experience an AE (95%CI 1.079-2.996, p=0.024). The cumulative incidence of irAEs was higher for ICI combination compared to monotherapy (subdistribution hazard ratio (sHR) 2.28, 95%CI 1.36-3.84), adjusting for age at malignancy, but there was no significant difference between rate of high-grade toxicity for patients treated with ICI combination versus monotherapy (See Figure 1). On subgroup analysis for patients with melanoma or lung cancer, the cumulative incidence of irAEs or AID flares were not statistically different between treatment groups. PFS was longer (but not statistically significant) for combination therapy for any tumor type compared to single agent (median 12.3mo, 95%CI 5.0-23.2 versus 7.3mo, 95%CI 5.2-11.3, p=0.116). Similar trend was noted for PFS for melanoma (median 23.2mo combination vs. 14.0mo monotherapy, p=0.4237), while the opposite relation was noted for lung cancer subgroup (4.4mo combination vs. 7.1mo monotherapy, p=0.2933).
Conclusion(s): Efficacy of ICI combination versus monotherapy was not statistically significant and so still remains unclear in this patient population, but there was no significant difference in rates of high-grade toxicity between the two cohorts. Our data supports the notion that patients with pre-existing AIDs should not be indiscriminately precluded from getting ICI combination. Our results provide guidance for future prospective clinical trials studying combination therapy for subgroups of this at-risk population. No statistically significant difference appreciated in high grade adverse events between patients with pre-existing autoimmune disease treated with ICI combination versus monotherapy. Grading determined by the Common Terminology Criteria for Adverse Events rubric with grade 3 or higher considered "high grade."
EMBASE:639967125
ISSN: 2326-5205
CID: 5512972

Cellular and Humoral Immunity to SARS-CoV-2 Infection in Multiple Sclerosis Patients on Ocrelizumab and Other Disease-Modifying Therapies: A Multi-Ethnic Observational Study

Kister, Ilya; Patskovsky, Yury; Curtin, Ryan; Pei, Jinglan; Perdomo, Katherine; Rimler, Zoe; Voloshyna, Iryna; Samanovic, Marie I; Cornelius, Amber R; Velmurugu, Yogambigai; Nyovanie, Samantha; Kim, Joseph J; Tardio, Ethan; Bacon, Tamar E; Zhovtis Ryerson, Lana; Raut, Pranil; Pedotti, Rosetta; Hawker, Kathleen; Raposo, Catarina; Priest, Jessica; Cabatingan, Mark; Winger, Ryan C; Mulligan, Mark J; Krogsgaard, Michelle; Silverman, Gregg J
OBJECTIVE:The objective of this study was to determine the impact of multiple sclerosis (MS) disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. METHODS:Patients with MS aged 18 to 60 years were evaluated for anti-nucleocapsid and anti-Spike receptor-binding domain (RBD) antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture enzyme-linked immunosorbent assay (ELISA); and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS:Between January 6, 2021, and July 21, 2021, 389 patients with MS were recruited (mean age 40.3 years; 74% women; 62% non-White). Most common DMTs were ocrelizumab (OCR)-40%; natalizumab -17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. One hundred seventy-seven patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, and 47 were asymptomatic. Antibody responses were markedly attenuated in OCR compared with other groups (p ≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p = 0.03), increased in natalizumab (p <0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r = 0.45, p = 0.0002) and non-OCR (r = 0.64, p <0.0001). Immune responses did not differ by race/ethnicity. Coronavirus disease 2019 (COVID-19) clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION/CONCLUSIONS:DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and nondisabled group of patients with MS. ANN NEUROL 2022.
PMID: 35289960
ISSN: 1531-8249
CID: 5191732

Preexisting immune-mediated inflammatory disease is associated with improved survival and increased toxicity in melanoma patients who receive immune checkpoint inhibitors

Gulati, Nicholas; Celen, Arda; Johannet, Paul; Mehnert, Janice M; Weber, Jeffrey; Krogsgaard, Michelle; Osman, Iman; Zhong, Judy
BACKGROUND:Immune-related adverse events (irAEs) are common, clinically significant autoinflammatory toxicities observed with immune checkpoint inhibitors (ICI). Preexisting immune-mediated inflammatory disease (pre-IMID) is considered a relative contraindication to ICI due to the risk of inciting flares. Improved understanding of the risks and benefits of treating pre-IMID patients with ICI is needed. METHODS:We studied melanoma patients treated with ICI and enrolled in a prospective clinicopathological database. We compiled a list of 23 immune-mediated inflammatory diseases and evaluated their presence prior to ICI. We tested the associations between pre-IMID and progression-free survival (PFS), overall survival (OS), and irAEs. RESULTS:In total, 483 melanoma patients were included in the study; 74 had pre-IMID and 409 did not. In patients receiving ICI as a standard of care (SoC), pre-IMID was significantly associated with irAEs (p = 0.04) as well as improved PFS (p = 0.024) and OS (p = 0.007). There was no significant association between pre-IMID and irAEs (p = 0.54), PFS (p = 0.197), or OS (p = 0.746) in patients treated through a clinical trial. Pre-IMID was significantly associated with improved OS in females (p = 0.012), but not in males (p = 0.35). CONCLUSIONS:The dichotomy of the impact of pre-IMID on survival and irAEs in SoC versus clinical trial patients may reflect the inherit selection bias in patients accrued in clinical trials. Future mechanistic work is required to better understand the differences in outcomes between female and male pre-IMID patients. Our data challenge the notion that clinicians should avoid ICI in pre-IMID patients, although close monitoring and prospective clinical trials evaluating ICI in this population are warranted.
PMCID:8559502
PMID: 34647433
ISSN: 2045-7634
CID: 5062002

Vaccine against SARS-CoV2-generated Immunity in Ocrelizumab-treated Patients: Longitudinal Assessments (VIOLA): Study design and early results [Meeting Abstract]

Kister, I; Piquet, A; Patskovsky, Y; Voloshyna, I; Ferstler, N; Curtin, R; Yogambigai, V; Nyovanie, S; Rimler, Z; Perdomo, K; Borko, T; Selva, S; Parra, Gonzalez J; Bacon, T; Zhovtis, Ryerson L; Raposo, C; Priest, J; Winger, R; Silverman, G J; Krogsgaard, M
Objective: To examine antibody and T-cell responses to mRNAplatform COVID-19 vaccines in Ocrelizumab-treated MS patients over a 12-month period. Introduction: B-cell depletion with Ocrelizumab attenuates humoral responses to vaccines. The kinetics of humoral and cellular immune responses to COVID-19 vaccines in B-cell depleted MS patients has not been reported.
Method(s): VIOLA (NCT04843774) is an open-label, observational study enrolling 60 MS patients on Ocrelizumab from NYU and Rocky Mountain at the University of Colorado MS Centers. First vaccine dose occurred >=2 weeks after ocrelizumab infusion; second-dose >=8 weeks before the next infusion. Antibody responses to SARS-COV-2 spike proteins were assessed with Elecsys Anti-SARS-CoV-2 (Roche Diagnostics) and multiplex bead-based immunoassays. T-cell responses to SARS-CoV-2 Spike protein were assessed with IFNgamma ELISpot (Invitrogen) and TruCulture (Myriad RBM) and high-dimensional immunophenotyping. Samples are collected pre-vaccination and at 4, 12, 24, and 48-weeks post-vaccination.
Result(s): As of 7/15/2021, 52 subjects have been enrolled (39.7+/-10.0 years; 73% female; 47% non-white), of whom 47 were fully vaccinated (85% Pfizer, 15% Moderna). Anti-spike RBD antibody (Elecsys Anti-SARS-CoV-2) were available for pre- and post-vaccine timepoints for 15 patients. Pre-vaccine, 1/15 (7%) patients had detectable titers, while at 4-weeks postvaccine, 10/15 (66%) patients had detectible titers (mean for positives: 1189 U/ml; 5 patients had positive titers <25 U/ml). T-cell activation based on induced IFNgamma secretion (TruCulture) at baseline and 4-week post-vaccine timepoints were available for 13 patients, of whom 12 (92%) were increased (mean pre-vaccine: 24 pg/ml; mean post-vaccine: 366 pg/ml, two-tailed t-test, p=0.0032).
Conclusion(s): This prospective study of humoral and cellular immune responses to COVID-19 vaccines in Ocrelizumab-treated patients will generate data to help guide management of MS patients on anti-CD20 therapies. Early results suggest that 4-weeks post-vaccination nearly all Ocrelizumab-treated MS patients develop T-cell immunity and two-thirds showed evidence of humoral response. Additional 4-week and 12-week post-vaccination data will be presented
EMBASE:636340378
ISSN: 1477-0970
CID: 5179832