Try a new search

Format these results:

Searched for:

person:la506 or asslaj01 or babbj01 or baetes01 or beneln01 or boadaf01 or brownr13 or chandh01 or collic07 or cmd428 or dingy04 or fieree01 or gey01 or kjg5 or luiy01 or goneno01 or sunghk01 or ik474 or knollf01 or lattar01 or lazarm03 or madelg01 or novikd01 or rayagj01 or rechtm01 or regatr01 or hr18 or sigmue01 or sodicd01 or storee01 or veraaj01 or zaimwy01 or zhangj18

active:yes

exclude-minors:true

Total Results:

2333


Resolution enhancement, noise suppression, and joint T2* decay estimation in dual-echo sodium-23 MR imaging using anatomically guided reconstruction

Schramm, Georg; Filipovic, Marina; Qian, Yongxian; Alivar, Alaleh; Lui, Yvonne W; Nuyts, Johan; Boada, Fernando
PURPOSE/OBJECTIVE:Na images. METHODS:Na TPI brain datasets of healthy controls acquired on a 3T Siemens Prisma system were reconstructed using conventional reconstruction, AGR and AGRdm. RESULTS:Our simulations show that compared to conventional reconstructions, AGR and AGRdm show improved bias-noise characteristics in several regions of the brain. Moreover, AGR and AGRdm images show more anatomical detail and less noise in the reconstructions of the experimental data sets. Compared to AGR and the conventional reconstruction, AGRdm shows higher contrast in the sodium concentration ratio between gray and white matter and between gray matter and the brain stem. CONCLUSION/CONCLUSIONS:Na MR imaging at 3T.
PMID: 38044789
ISSN: 1522-2594
CID: 5597582

Patterns of Access to Radiology Reports and Images Through a Patient Portal

Wang, Jason; Goldberg, Julia E; Block, Tobias; Ostrow, Dana; Carbone, Dan; Recht, Michael; Doshi, Ankur
Access to radiology reports and images through a patient portal offers several advantages. The purpose of this study was to characterize patient's interactions with their radiology results. This was a retrospective study that evaluated radiography, ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography, exams performed between July 2020 and June 2021 for patients aged 12 and older. Exam information, access logs of radiology reports and images, and patient demographics were obtained from the electronic health record and image viewing software. Descriptive statistics were computed. The study included 1,685,239 exams. A total of 54.1% of reports were viewed. MRI and PET reports were viewed with the greatest frequency (70.2% and 67.6%, respectively); 25.5% of exam images were viewed, with the greatest frequency for MRI (40.1%). Exams were shared a total of 17,095 times and downloaded 8409 times; 64% of reports were viewed for patients aged 18-39 and 34% for patients aged 80 and greater. The rate of reports viewed was greater for patients with English as their preferred language (57.1%) compared to other languages (33.3%). Among those viewed, 56.5% of reports and 48.2% of images were viewed multiple times; 72.8% of images were viewed on smartphones, 25.8% on desktop computers, and 1.4% on tablets. Patients utilize a portal to view reports and view and share images. Continued efforts are warranted to promote the use of portals and create patient-friendly imaging results to help empower patients.
PMID: 38315344
ISSN: 2948-2933
CID: 5632732

Characterization of Age-Related and Sex-Related Differences of Relaxation Parameters in the Intervertebral Disc Using MR-Fingerprinting

Menon, Rajiv G; Monga, Anmol; Kijowski, Richard; Regatte, Ravinder R
BACKGROUND:Multiparameter characterization using MR fingerprinting (MRF) can quantify multiple relaxation parameters of intervertebral disc (IVD) simultaneously. These parameters may vary by age and sex. PURPOSE/OBJECTIVE:To investigate age- and sex-related differences in the relaxation parameters of the IVD of the lumbar spine using a multiparameter MRF technique. STUDY TYPE/METHODS:Prospective. SUBJECTS/METHODS:17 healthy subjects (8 male; mean age = 34 ± 10 years, range 20-60 years). FIELD STRENGTH/SEQUENCE/UNASSIGNED:maps at 3.0T. ASSESSMENT/RESULTS:maps. STATISTICAL TESTS/METHODS:of IVD. Statistical significance was defined as P-value <0.05. RESULTS:contrast (R = 0.709). CONCLUSION/CONCLUSIONS:of IVD in healthy subjects. LEVEL OF EVIDENCE/METHODS:2 TECHNICAL EFFICACY: Stage 1.
PMID: 37610269
ISSN: 1522-2586
CID: 5598472

In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T

Li, Chenyang; Buch, Sagar; Sun, Zhe; Muccio, Marco; Jiang, Li; Chen, Yongsheng; Haacke, E Mark; Zhang, Jiangyang; Wisniewski, Thomas M; Ge, Yulin
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p = 0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
PMID: 38554779
ISSN: 1095-9572
CID: 5645402

Improved reconstruction of crossing fibers in the mouse optic pathways with orientation distribution function fingerprinting

Filipiak, Patryk; Sajitha, Thajunnisa A; Shepherd, Timothy M; Clarke, Kamri; Goldman, Hannah; Placantonakis, Dimitris G; Zhang, Jiangyang; Chan, Kevin C; Boada, Fernando E; Baete, Steven H
PURPOSE/OBJECTIVE:The accuracy of diffusion MRI tractography reconstruction decreases in the white matter regions with crossing fibers. The optic pathways in rodents provide a challenging structure to test new diffusion tractography approaches because of the small crossing volume within the optic chiasm and the unbalanced 9:1 proportion between the contra- and ipsilateral neural projections from the retina to the lateral geniculate nucleus, respectively. METHODS: RESULTS:ODF-FP outperformed by over 100% all the tested methods in terms of the ratios between the contra- and ipsilateral segments of the reconstructed optic pathways as well as the spatial overlap between tractography and MEMRI. CONCLUSION/CONCLUSIONS:In this challenging model system, ODF-Fingerprinting reduced uncertainty of diffusion tractography for complex structural formations of fiber bundles.
PMID: 37927121
ISSN: 1522-2594
CID: 5612792

Emerging Trends in Magnetic Resonance Fingerprinting for Quantitative Biomedical Imaging Applications: A Review

Monga, Anmol; Singh, Dilbag; de Moura, Hector L; Zhang, Xiaoxia; Zibetti, Marcelo V W; Regatte, Ravinder R
Magnetic resonance imaging (MRI) stands as a vital medical imaging technique, renowned for its ability to offer high-resolution images of the human body with remarkable soft-tissue contrast. This enables healthcare professionals to gain valuable insights into various aspects of the human body, including morphology, structural integrity, and physiological processes. Quantitative imaging provides compositional measurements of the human body, but, currently, either it takes a long scan time or is limited to low spatial resolutions. Undersampled k-space data acquisitions have significantly helped to reduce MRI scan time, while compressed sensing (CS) and deep learning (DL) reconstructions have mitigated the associated undersampling artifacts. Alternatively, magnetic resonance fingerprinting (MRF) provides an efficient and versatile framework to acquire and quantify multiple tissue properties simultaneously from a single fast MRI scan. The MRF framework involves four key aspects: (1) pulse sequence design; (2) rapid (undersampled) data acquisition; (3) encoding of tissue properties in MR signal evolutions or fingerprints; and (4) simultaneous recovery of multiple quantitative spatial maps. This paper provides an extensive literature review of the MRF framework, addressing the trends associated with these four key aspects. There are specific challenges in MRF for all ranges of magnetic field strengths and all body parts, which can present opportunities for further investigation. We aim to review the best practices in each key aspect of MRF, as well as for different applications, such as cardiac, brain, and musculoskeletal imaging, among others. A comprehensive review of these applications will enable us to assess future trends and their implications for the translation of MRF into these biomedical imaging applications.
PMCID:10968015
PMID: 38534511
ISSN: 2306-5354
CID: 5644872

Efficacy and Impact of a Multimodal Intervention on CT Pulmonary Angiography Ordering Behavior in the Emergency Department

Gyftopoulos, Soterios; Simon, Emma; Swartz, Jordan L; Smith, Silas W; Martinez, Leticia Santos; Babb, James S; Horwitz, Leora I; Makarov, Danil V
OBJECTIVE:To evaluate the efficacy of a multimodal intervention in reducing CT pulmonary angiography (CTPA) overutilization in the evaluation of suspected pulmonary embolism in the emergency department (ED). METHODS:Previous mixed-methods analysis of barriers to guideline-concordant CTPA ordering results was used to develop a provider-focused behavioral intervention consisting of a clinical decision support tool and an audit and feedback system at a multisite, tertiary academic network. The primary outcome (guideline concordance) and secondary outcomes (yield and CTPA and D-dimer order rates) were compared using a pre- and postintervention design. ED encounters for adult patients from July 5, 2017, to January 3, 2019, were included. Fisher's exact tests and statistical process control charts were used to compare the pre- and postintervention groups for each outcome. RESULTS:Of the 201,912 ED patient visits evaluated, 3,587 included CTPA. Guideline concordance increased significantly after the intervention, from 66.9% to 77.5% (P < .001). CTPA order rate and D-dimer order rate also increased significantly, from 17.1 to 18.4 per 1,000 patients (P = .035) and 30.6 to 37.3 per 1,000 patients (P < .001), respectively. Percent yield showed no significant change (12.3% pre- versus 10.8% postintervention; P = .173). Statistical process control analysis showed sustained special-cause variation in the postintervention period for guideline concordance and D-dimer order rates, temporary special-cause variation for CTPA order rates, and no special-cause variation for percent yield. CONCLUSION/CONCLUSIONS:Our success in increasing guideline concordance demonstrates the efficacy of a mixed-methods, human-centered approach to behavior change. Given that neither of the secondary outcomes improved, our results may demonstrate potential limitations to the guidelines directing the ordering of CTPA studies and D-dimer ordering.
PMID: 37247831
ISSN: 1558-349x
CID: 5543162

Utility of a 2D kinematic HASTE sequence in magnetic resonance imaging assessment of adjacent segment degeneration following anterior cervical discectomy and fusion

Burke, Christopher J; Samim, Mohammad; Babb, James S; Walter, William R
OBJECTIVES/OBJECTIVE:To evaluate a dynamic half-Fourier acquired single turbo spin echo (HASTE) sequence following anterior cervical discectomy and fusion (ACDF) at the junctional level for adjacent segment degeneration comparing dynamic listhesis to radiographs and assessing dynamic cord contact and deformity during flexion-extension METHODS: Patients with ACDF referred for cervical spine MRI underwent a kinematic flexion-extension sagittal 2D HASTE sequence in addition to routine sequences. Images were independently reviewed by three radiologists for static/dynamic listhesis, and compared to flexion-extension radiographs. Blinded assessment of the HASTE sequence was performed for cord contact/deformity between neutral, flexion, and extension, to evaluate concordance between readers and inter-modality agreement. Inter-reader agreement for dynamic listhesis and impingement grade and inter-modality agreement for dynamic listhesis on MRI and radiographs was assessed using the kappa coefficient and percentage concordance. RESULTS:A total of 28 patients, mean age 60.2 years, were included. Mean HASTE acquisition time was 42 s. 14.3% demonstrated high grade dynamic stenosis (> grade 4) at the adjacent segment. There was substantial agreement for dynamic cord impingement with 70.2% concordance (kappa = 0.62). Concordance across readers for dynamic listhesis using HASTE was 81.0% (68/84) (kappa = 0.16) compared with 71.4% (60/84) (kappa = 0.40) for radiographs. Inter-modality agreement between flexion-extension radiographs and MRI assessment for dynamic listhesis across the readers was moderate (kappa = 0.41; 95% confidence interval: 0.16 to 0.67). CONCLUSIONS:A sagittal flexion-extension HASTE cine sequence provides substantial agreement between readers for dynamic cord deformity and moderate agreement between radiographs and MRI for dynamic listhesis. CLINICAL RELEVANCE STATEMENT/CONCLUSIONS:Degeneration of the adjacent segment with instability and myelopathy is one of the most common causes of pain and neurological deterioration requiring re-operation following cervical fusion surgery. KEY POINTS/CONCLUSIONS:• A real-time kinematic 2D sagittal HASTE flexion-extension sequence can be used to assess for dynamic listhesis, cervical cord, contact and deformity. • The additional kinematic cine sequence was well tolerated and the mean acquisition time for the 2D HASTE sequence was 42 s (range 31-44 s). • A sagittal flexion-extension HASTE cine sequence provides substantial agreement between readers for dynamic cord deformity and moderate agreement between radiographs and MRI for dynamic listhesis.
PMID: 37594524
ISSN: 1432-1084
CID: 5619202

Simultaneous perfusion, diffusion, T2 *, and T1 mapping with MR fingerprinting

Fan, Hongli; Bunker, Lisa; Wang, Zihan; Durfee, Alexandra Zezinka; Lin, Doris; Yedavalli, Vivek; Ge, Yulin; Zhou, Xiaohong Joe; Hillis, Argye E; Lu, Hanzhang
PURPOSE/OBJECTIVE:has important applications in cerebrovascular diseases. At present, these sequences are performed separately. This study aims to develop a novel MRI technique to simultaneously estimate these parameters. METHODS:* mapping). Test-retest repeatability and initial clinical application in two patients with stroke were evaluated. RESULTS:estimation was highly reliable, with voxelwise coefficient of variation (CoV) <5%. The CoV for arterial transit time and cerebral blood flow was 16% ± 3% and 25% ± 9%, respectively. The results from the two patients with stroke demonstrated that parametric maps derived from the proposed method can detect both ischemic and hemorrhagic stroke. CONCLUSION/CONCLUSIONS:The proposed method is a promising technique for multi-parametric mapping and has potential use in patients with stroke.
PMID: 37749847
ISSN: 1522-2594
CID: 5611522

Open-source versatile 3D-print animal conditioning platform design for in vivo preclinical brain imaging in awake mice and anesthetized mice and rats

Ben Youss, Zakia; Arefin, Tanzil Mahmud; Qayyum, Sawwal; Yi, Runjie; Zhang, Jiangyang; Zaim Wadghiri, Youssef; Alon, Leeor; Yaghmazadeh, Omid
Proper animal conditioning is a key factor in the quality and success of preclinical neuroimaging applications. Here, we introduce an open-source easy-to-modify multimodal 3D printable design for rodent conditioning for magnetic resonance imaging (MRI) or other imaging modalities. Our design can be used for brain imaging in anesthetized or awake mice, and in anesthetized rats. We show ease of use and reproducibility of subject conditioning with anatomical T2-weighted imaging for both mice and rats. We also demonstrate the application of our design for awake functional MRI in mice using both visual evoked potential and olfactory stimulation paradigms. In addition, using a combined MRI, positron emission tomography and X-ray computed tomography experiment, we demonstrate that our proposed cradle design can be utilized for multiple imaging modalities.
PMID: 38279029
ISSN: 1548-4475
CID: 5625512