Try a new search

Format these results:

Searched for:

person:lafaij01

Total Results:

109


Single-Cell RNA Sequencing of Visceral Adipose Tissue Leukocytes Reveals that Caloric Restriction Following Obesity Promotes the Accumulation of a Distinct Macrophage Population with Features of Phagocytic Cells

Weinstock, Ada; Brown, Emily J; Garabedian, Michela L; Pena, Stephanie; Sharma, Monika; Lafaille, Juan; Moore, Kathryn J; Fisher, Edward A
Obesity can lead to type 2 diabetes and is an epidemic. A major contributor to its adverse effects is inflammation of the visceral adipose tissue (VAT). Life-long caloric restriction (CR), in contrast, results in extended lifespan, enhanced glucose tolerance/insulin sensitivity, and other favorable phenotypes. The effects of CR following obesity are incompletely established, but studies show multiple benefits. Many leukocyte types, macrophages predominantly, reside in VAT in homeostatic and pathological states. CR following obesity transiently increases VAT macrophage content prior to resolution of inflammation and obesity, suggesting that macrophage content and phenotype play critical roles. Here, we examined the heterogeneity of VAT leukocytes and the effects of obesity and CR. In general, our single-cell RNA-sequencing data demonstrate that macrophages are the most abundant and diverse subpopulation of leukocytes in VAT. Obesity induced significant transcriptional changes in all 15 leukocyte subpopulations, with many genes showing coordinated changes in expression across the leukocyte subpopulations. Additionally, obese VAT displayed expansion of one major macrophage subpopulation, which, in silico, was enriched in lipid binding and metabolic processes. This subpopulation returned from dominance in obesity to lean proportions after only 2 weeks of CR, although the pattern of gene expression overall remained similar. Surprisingly, CR VAT is dominated by a different macrophage subpopulation, which is absent in lean conditions. This subpopulation is enriched in genes related to phagocytosis and we postulate that its function includes clearance of dead cells, as well as excess lipids, contributing to limiting VAT inflammation and restoration of the homeostatic state.
PMCID:6687332
PMID: 31396408
ISSN: 2084-6835
CID: 4034452

Diet Modifies Colonic Microbiota and CD4+ T Cell Repertoire to Induce Flares of Colitis in Mice With Myeloid-cell Expression of Interleukin 23

Chen, Lili; He, Zhengxiang; Iuga, Alina Cornelia; Martins Filho, Sebastião N; Faith, Jeremiah J; Clemente, Jose C; Deshpande, Madhura; Jayaprakash, Anitha; Colombel, Jean-Frederic; Lafaille, Juan J; Sachidanandam, Ravi; Furtado, Glaucia C; Lira, Sergio A
BACKGROUND & AIMS/OBJECTIVE:Several studies have shown that signaling via the interleukin 23 (IL23) receptor is required for development of colitis. We studied the roles of IL23, dietary factors, alterations to the microbiota, and T cells in development and progression of colitis in mice. METHODS:mice, and T-cell receptor sequences were determined. RESULTS:mice without colitis (fed the 5053 diet), due to expansion of dominant T-cell clones. CONCLUSIONS:T cells that becomes activated in response to dietary changes and alterations to the intestinal microbiota. The results indicate that alterations in the diet, intestinal microbiota, and IL23 signaling can contribute to pathogenesis of inflammatory bowel disease.
PMID: 29909020
ISSN: 1528-0012
CID: 3157982

Publisher Correction: IgG1 memory B cells keep the memory of IgE responses

He, Jin-Shu; Subramaniam, Sharrada; Narang, Vipin; Srinivasan, Kandhadayar; Saunders, Sean P; Carbajo, Daniel; Wen-Shan, Tsao; Hidayah Hamadee, Nur; Lum, Josephine; Lee, Andrea; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Lafaille, Juan J; Curotto de Lafaille, Maria A
The originally published version of this Article contained errors in Fig. 4 that were introduced during the production process. In panel c, the two uppermost labels 'IgE spleen' and 'IgE BM' incorrectly read 'IgG1 spleen' and 'IgE1 BM', respectively. These errors have now been corrected in both the PDF and HTML versions of the Article.
PMCID:5832859
PMID: 29497073
ISSN: 2041-1723
CID: 2966002

Route of Antigen Presentation Can Determine the Selection of Foxp3-Dependent or Foxp3-Independent Dominant Immune Tolerance

Agua-Doce, Ana; Caridade, Marta; Oliveira, Vanessa G; Bergman, Lisa; Lafaille, Maria C; Lafaille, Juan J; Demengeot, Jocelyne; Graca, Luis
It has been shown that dominant tolerance, namely in transplantation, requires Foxp3+ regulatory T cells. Although most tolerance-inducing regimens rely on regulatory T cells, we found that induction of tolerance to proteins in aluminum hydroxide can be achieved in Foxp3-deficient mice using nondepleting anti-CD4 Abs. This type of tolerance is Ag specific, and tolerant mice retain immune competence to respond to unrelated Ags. We demonstrated with chicken OVA-specific TCR-transgenic mice that the same tolerizing protocol (CD4 blockade) and the same target Ag (OVA) achieves Foxp3-dependent transplantation tolerance to OVA-expressing skin grafts, but Foxp3-independent tolerance when the Ag is provided as OVA-aluminum hydroxide. In the latter case, we found that tolerance induction triggered recessive mechanisms leading to elimination of effector cells and, simultaneously, a dominant mechanism associated with the emergence of an anergic and regulatory CTLA-4+IL-2lowFoxp3- T cell population, where the tolerance state is IL-10 dependent. Such Foxp3-independent mechanisms can improve the efficacy of tolerance-inducing protocols.
PMID: 29167234
ISSN: 1550-6606
CID: 2922172

IgG1 memory B cells keep the memory of IgE responses

He, Jin-Shu; Subramaniam, Sharrada; Narang, Vipin; Srinivasan, Kandhadayar; Saunders, Sean P; Carbajo, Daniel; Wen-Shan, Tsao; Hidayah Hamadee, Nur; Lum, Josephine; Lee, Andrea; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Lafaille, Juan J; Curotto de Lafaille, Maria A
The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80+CD73+ and CD80-CD73-, contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80+CD73+ high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.
PMCID:5608722
PMID: 28935935
ISSN: 2041-1723
CID: 2707842

CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-alpha

Garre, Juan Mauricio; Silva, Hernandez Moura; Lafaille, Juan J; Yang, Guang
Impaired learning and cognitive function often occurs during systemic infection or inflammation. Although activation of the innate immune system has been linked to the behavioral and cognitive effects that are associated with infection, the underlying mechanisms remain poorly understood. Here we mimicked viral immune activation with poly(I:C), a synthetic analog of double-stranded RNA, and longitudinally imaged postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex using two-photon microscopy. We found that peripheral immune activation caused dendritic spine loss, impairments in learning-dependent dendritic spine formation and deficits in multiple learning tasks in mice. These observed synaptic alterations in the cortex were mediated by peripheral-monocyte-derived cells and did not require microglial function in the central nervous system. Furthermore, activation of CX3CR1highLy6Clow monocytes impaired motor learning and learning-related dendritic spine plasticity through tumor necrosis factor (TNF)-alpha-dependent mechanisms. Taken together, our results highlight CX3CR1high monocytes and TNF-alpha as potential therapeutic targets for preventing infection-induced cognitive dysfunction.
PMCID:5590232
PMID: 28504723
ISSN: 1546-170x
CID: 2562662

Corrigendum: A subpopulation of high IL-21-producing CD4+ T cells in Peyer's Patches is induced by the microbiota and regulates germinal centers

Jones, Leigh; Ho, Wen Qi; Ying, Sze; Ramakrishna, Lakshmi; Srinivasan, Kandhadayar G; Yurieva, Marina; Ng, Wan Pei; Subramaniam, Sharrada; Hamadee, Nur H; Joseph, Sabrina; Dolpady, Jayashree; Atarashi, Koji; Honda, Kenya; Zolezzi, Francesca; Poidinger, Michael; Lafaille, Juan J; Curotto de Lafaille, Maria A
PMCID:5056454
PMID: 27721495
ISSN: 2045-2322
CID: 2410322

A subpopulation of high IL-21-producing CD4(+) T cells in Peyer's Patches is induced by the microbiota and regulates germinal centers

Jones, Leigh; Ho, Wen Qi; Ying, Sze; Ramakrishna, Lakshmi; Srinivasan, Kandhadayar G; Yurieva, Marina; Ng, Wan Pei; Subramaniam, Sharrada; Hamadee, Nur H; Joseph, Sabrina; Dolpady, Jayashree; Atarashi, Koji; Honda, Kenya; Zolezzi, Francesca; Poidinger, Michael; Lafaille, Juan J; Curotto de Lafaille, Maria A
The production of IL-21 by T follicular helper (Tfh) cells is vital in driving the germinal centre reaction and high affinity antibody formation. However, the degree of Tfh cell heterogeneity and function is not fully understood. We used a novel IL-21eGFP reporter mouse strain to analyze the diversity and role of Tfh cells. Through the analysis of GFP expression in lymphoid organs of IL-21eGFP mice, we identified a subpopulation of GFP(+), high IL-21 producing Tfh cells present only in Peyer's Patches. GFP(+)Tfh cells were found to be polyclonal and related to GFP(-)Tfh cells of Peyer's Patches in TCR repertoire composition and overall gene expression. Studies on the mechanisms of induction of GFP(+)Tfh cells demonstrated that they required the intestinal microbiota and a diverse repertoire of CD4(+) T cells and B cells. Importantly, ablation of GFP(+) cells resulted in a reduced frequency of Peyer's Patches IgG1 and germinal center B cells in addition to small but significant shifts in gut microbiome composition. Our work highlights the diversity among IL-21 producing CD4(+) Tfh cells, and the interrelationship between the intestinal bacteria and Tfh cell responses in the gut.
PMCID:4976330
PMID: 27499025
ISSN: 2045-2322
CID: 2211622

Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation

Sujino, Tomohisa; London, Mariya; Hoytema van Konijnenburg, David P; Rendon, Tomiko; Buch, Thorsten; Silva, Hernandez M; Lafaille, Juan J; Reis, Bernardo S; Mucida, Daniel
Foxp3+ regulatory T cells in peripheral tissues (pTregs) are instrumental in limiting inflammatory responses to non-self antigens. Within the intestine, pTregs are located primarily in the lamina propria, while intraepithelial CD4+ T cells (CD4IELs), which also exhibit anti-inflammatory properties and depend on similar environmental cues, reside in the epithelium. Using intravital microscopy, we show distinct cell dynamics of intestinal Tregs and CD4IELs Upon migration to the epithelium, Tregs lose Foxp3 and convert to CD4IELs in a microbiota-dependent fashion, an effect attributed to the loss of the transcription factor ThPOK. Finally, we demonstrate that pTregs and CD4IELs perform complementary roles in the regulation of intestinal inflammation. These results reveal intra-tissue specialization of anti-inflammatory T cells shaped by discrete niches of the intestine.
PMCID:4968079
PMID: 27256884
ISSN: 1095-9203
CID: 2125232

Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus

Lin, Jiqiang; Yang, Lu; Silva, Hernandez Moura; Trzeciak, Alissa; Choi, Yongwon; Schwab, Susan R; Dustin, Michael L; Lafaille, Juan J
Regulatory T-cell (Treg) selection in the thymus is essential to prevent autoimmune diseases. Although important rules for Treg selection have been established, there is controversy regarding the degree of self-reactivity displayed by T-cell receptors expressed by Treg cells. In this study we have developed a model of autoimmune skin inflammation, to determine key parameters in the generation of skin-reactive Treg cells in the thymus (tTreg). tTreg development is predominantly AIRE dependent, with an AIRE-independent component. Without the knowledge of antigen recognized by skin-reactive Treg cells, we are able to enhance skin-specific tTreg cell generation using three approaches. First, we increase medullary thymic epithelial cells by using mice lacking osteoprotegerin or by adding TRANCE (RANKL, Tnfsf11). Second, we inject intrathymically peripheral dendritic cells from skin-draining sites. Finally, we inject skin tissue lysates intrathymically. These findings have implications for enhancing the generation of organ-specific Treg cells in autoimmune diseases.
PMCID:4773449
PMID: 26923114
ISSN: 2041-1723
CID: 2006242