Try a new search

Format these results:

Searched for:

person:latsol01

in-biosketch:true

Total Results:

36


New Dimensions in Renal Transplant Sonography: Applications of 3-Dimensional Ultrasound

Frank, Susan J; Walter, William R; Latson, Larry; Cohen, Hillel W; Koenigsberg, Mordecai
BACKGROUND:The aim of this study is to demonstrate the usefulness of adding 3-dimensional (3D) ultrasound in evaluation of renal transplant vasculature compared to 2-dimensional (2D) Duplex ultrasound. METHODS:One hundred thirteen consecutive renal transplant 2D and 3D ultrasound examinations were performed and retrospectively reviewed by 2 board-certified radiologists and a radiology resident individually; each reviewed 2D and then 3D images, including color and spectral Doppler. They recorded ability to visualize the surgical anastomosis and rated visualization on a subjective scale. Interobserver agreement was evaluated. Variant anastomosis anatomy was recorded. Tortuosity or stenosis was evaluated if localized Doppler velocity elevation was present. RESULTS:The reviewers directly visualized the anastomosis more often with 3D ultrasound ((Equation is included in full-text article.)=97.5%) compared with 2D ((Equation is included in full-text article.)=54.5%) [difference in means (DM) = 43% (95% confidence interval (CI) = 36%-50%) (P < 0.001)]. The reviewers visualized the anastomosis more clearly with 3D ultrasound (P < 0.001) [difference in medians = 0.5, 1.0, and 1.0, (95% CI = 0.5-1.0, 0.5-1.0, and 1.0-1.5)]. Detection of variant anatomy improved with 3D ultrasound by 2 reviewers [DM = 7.1% and 8.9% (95% CI = 1%-13% and 4%-14%, respectively) (P < 0.05)]. There was high interobserver agreement [(Equation is included in full-text article.)= 95.3%, (95% CI = 91.9%-98.7%) regarding anastomosis visualization among reviewers with wide-ranging experience. CONCLUSIONS:Direct visualization of the entire anastomosis was improved with 3D ultrasound. Three-dimensional evaluation improved detection of anatomic variants and identified tortuosity as the likely cause of borderline localized elevation in Doppler velocity. The data added by 3D ultrasound may obviate confirmatory testing with magnetic resonance angiography or computed tomographic angiography after equivocal 2D ultrasound results.
PMCID:5357201
PMID: 28291767
ISSN: 1534-6080
CID: 4358802

Aorto-Right Ventricular Fistula Post-Transcatheter Aortic Valve Replacement: Multimodality Imaging of Successful Percutaneous Closure

Vainrib, Alan F; Ibrahim, Homam; Hisamoto, Kazuhiro; Staniloae, Cezar S; Jilaihawi, Hasan; Benenstein, Ricardo J; Latson, Larry; Williams, Mathew R; Saric, Muhamed
PMCID:6034486
PMID: 30062248
ISSN: 2468-6441
CID: 3217032

Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions?

Bhatla, Puneet; Tretter, Justin T; Ludomirsky, Achi; Argilla, Michael; Latson, Larry A Jr; Chakravarti, Sujata; Barker, Piers C; Yoo, Shi-Joon; McElhinney, Doff B; Wake, Nicole; Mosca, Ralph S
Rapid prototyping facilitates comprehension of complex cardiac anatomy. However, determining when this additional information proves instrumental in patient management remains a challenge. We describe our experience with patient-specific anatomic models created using rapid prototyping from various imaging modalities, suggesting their utility in surgical and interventional planning in congenital heart disease (CHD). Virtual and physical 3-dimensional (3D) models were generated from CT or MRI data, using commercially available software for patients with complex muscular ventricular septal defects (CMVSD) and double-outlet right ventricle (DORV). Six patients with complex anatomy and uncertainty of the optimal management strategy were included in this study. The models were subsequently used to guide management decisions, and the outcomes reviewed. 3D models clearly demonstrated the complex intra-cardiac anatomy in all six patients and were utilized to guide management decisions. In the three patients with CMVSD, one underwent successful endovascular device closure following a prior failed attempt at transcatheter closure, and the other two underwent successful primary surgical closure with the aid of 3D models. In all three cases of DORV, the models provided better anatomic delineation and additional information that altered or confirmed the surgical plan. Patient-specific 3D heart models show promise in accurately defining intra-cardiac anatomy in CHD, specifically CMVSD and DORV. We believe these models improve understanding of the complex anatomical spatial relationships in these defects and provide additional insight for pre/intra-interventional management and surgical planning.
PMID: 27837304
ISSN: 1432-1971
CID: 2304632

Imaging of the Postsurgical Thoracic Aorta: A State-of-the-Art Review

Latson, Larry A Jr; DeAnda, Abe Jr; Ko, Jane P
Techniques for repair of the aorta currently include open and endovascular methods, hybrid approaches, minimally-invasive techniques, and aortic branch vessel reimplantation or bypass. Collaboration among radiologists and vascular and cardiothoracic surgeons is essential. An awareness of the various surgical techniques, expected postoperative appearance, and potential complications is essential for radiologists. This review will cover the postoperative appearance of the thoracic aorta with a focus on the ascending aorta. The value of three-dimensional image evaluation will also be emphasized.
PMID: 27997469
ISSN: 1536-0237
CID: 2372712

CT pulmonary angiography of adult pulmonary vascular diseases: Technical considerations and interpretive pitfalls

Taslakian, Bedros; Latson, Larry A; Truong, Mylene T; Aaltonen, Eric; Shiau, Maria C; Girvin, Francis; Alpert, Jeffrey B; Wickstrom, Maj; Ko, Jane P
Computed tomography pulmonary angiography (CTPA) has become the primary imaging modality for evaluating the pulmonary arteries. Although pulmonary embolism is the primary indication for CTPA, various pulmonary vascular abnormalities can be detected in adults. Knowledge of these disease entities and understanding technical pitfalls that can occur when performing CTPA are essential to enable accurate diagnosis and allow timely management. This review will cover a spectrum of acquired abnormalities including pulmonary embolism due to thrombus and foreign bodies, primary and metastatic tumor involving the pulmonary arteries, pulmonary hypertension, as well as pulmonary artery aneurysms and stenoses. Additionally, methods to overcome technical pitfalls and interventional treatment options will be addressed.
PMID: 27776659
ISSN: 1872-7727
CID: 2287582

Sequential percutaneous closure of mitral prosthetic paravalvular leak and complex communicating pseudoaneurysms of the ascending aorta and subvalvar left ventricular outflow tract [Case Report]

Tretter, Justin T; Latson, Larry A Jr; McElhinney, Doff B
Ascending aortic and subvalvar left ventricular outflow tract (LVOT) pseudoaneurysms are rare complications following aortic valve or root replacement surgery. Clinically important paravalvular leaks are rare complications following any valve replacement surgery. We report an unusual case of sequential percutaneous closure of mitral prosthetic paravalvular leak and complex communicating ascending aortic and subvalvar LVOT pseudoaneurysms, which demonstrates the importance of multimodal imaging assessment surrounding percutaneous closure. (c) 2015 Wiley Periodicals, Inc.
PMID: 25964108
ISSN: 1522-726x
CID: 2178562

Utility of rapid prototyping in complex DORV: Does it alter management decisions? [Meeting Abstract]

Bhatla, P; Chakravarti, S; Latson, L A; Sodickson, D K; Mosca, R S; Wake, N
Background: Complex ventricular-arterial (VA) relationships in patients with double outlet right ventricle (DORV) make preoperative assessment of potential repair pathways challenging. The relationship of the ventricular septal defect (VSD) to one or both great arteries must be understood and this influences the choice of surgical procedure [1] In neonates and infants with DORV, Computed Tomography (CT) is often performed due to the ability to get high spatial resolution and ECG gated images [2], however it is possible to get the necessary information from Magnetic Resonance (MR) imaging with an added advantage of avoiding exposure to ionizing radiation. Both CT and MR allow image acquisition in three dimensions (3D) but traditional viewing of the anatomy using the multiplanar reformatting is actually done in two dimensions (2D). Volume rendering from either modality may also be performed, but typically only the external vascular anatomy is depicted. We hypothesized that it is possible to accurately define the intracardiac anatomy in infants with DORV using virtual and physical 3D printed (rapid prototyped) models created from either MR or CT and this can both aid in better defining potential VA pathways and may assist in surgical decision making. Methods: Virtual and physical 3D models were generated for three patients with DORV. Non-ECG-gated 3D spoiled fast gradient echo sequence MR angiography was used for two patients. Retrospective ECG gated CT angiography images acquired in diastole were used in the third patient (to better define the coronary arteries given the suspicion of a single coronary artery by echocardiography). Blood pool segmentation (Figure 1a) was performed in all the three patients (Mimics, Materialise, Leuven, Belgium). A 2 mm shell was added to the blood pool and it was hollowed to create a patient specific heart replica (3-matic, Materialise, Leuven, Belgium). All virtual models were cut to best demonstrate the VA relationships and the models were printed. Results: The VSD and VA relationships were well visualized in all three patients using both the virtual and physical models (Figure 1b,c). The models helped the surgeons better understand the anatomy in all patients: in two patients the surgical plan was altered while the plan was confirmed in the third patient (Table 1). Conclusions: Construction of 3D models in patients with DORV is feasible and allows for extensive examination and surgical planning. This may facilitate a focused and informed surgical procedure and improve the potential for successful outcome. For purposes of DORV, non-gated MRA is sufficient to delineate the VA relationships adequately for 3D printing and enhanced clinical decision-making. CT imaging should be reserved for only those patients where additional information like coronary artery anatomy is desired
EMBASE:72183054
ISSN: 1097-6647
CID: 1950612

Whole heart self-navigated 3D radial MRI for the creation of virtual 3D models in congenital heart disease [Meeting Abstract]

Wake, N; Feng, L; Piccini, D; Latson, L A; Mosca, R S; Sodickson, D K; Bhatla, P
Background: Three-dimensional (3D) virtual models are valuable tools that may help to better understand complex cardiovascular anatomy and facilitate surgical planning in patients with congenital heart disease (CHD). Although computed tomography (CT) images are used most commonly to create these models [1,2], Magnetic Resonance Imaging (MRI) may be an attractive alternative, since it offers superior soft-tissue characterization and flexible image contrast mechanisms, and avoids the use of ionizing radiation. However, segmentation on MRI images is inherently challenging due to noise/artifacts, magnetic field inhomogeneity, and relatively lower spatial resolution compared to CT. The purpose of this study was to evaluate the image quality and assess the feasibility of creating virtual 3D heart models using a novel prototype 3D whole heart self-navigated radial MRI technique. Methods: Free-breathing self-navigated whole heart MRI was performed on three pediatric patients: two with complex CHD (average age=17 months) and one with normal cardiac anatomy (age=17years), using a 3D radial, non-slice-selective, T2-prepared, fat-saturated bSSFP sequence on a 1.5T MRI scanner (MAGNETOM Aera, Siemens, Germany). The acquisition window (~50-55 ms) was placed in mid-diastole and was adapted for different heart rates. Imaging parameters were as follows: TR/TE=3.1/1.56 ms, FOV=200 mm3, voxel size=1 mm3, FA=115degree, and acquisition time=5-6 minutes (~12000 radial lines). Respiratory motion correction and image reconstruction was performed on the scanner as described in [3]. For comparison, conventional non-gated 3D FLASH or navigator-gated 3D bSSFP sequences were also performed. All results were blinded and randomized for image quality assessment by one pediatric cardiologist and one cardiac radiologist using a five-point scale (1=non-diagnostic, 2=poor, 3=adequate, 4=good, 5=excellent). Statistical analysis was performed to compare mean scores. DICOM images were imported to a 3D workstation (Mimics, Materialise, Leuven, Belgium) for 3D postprocessing. The cardiovascular anatomy was first segmented using a combination of automated and manual techniques; and volume rendering was performed to depict the anatomy of interest. Results: The free-breathing self-navigated 3D radial acquisition provided significantly improved image quality and myocardial wall-blood contrast (Figure 1). Mean scores were 4.58 and 2.67 for the 3D radial and FLASH/ bSSFP sequences respectively (p = 0.003). The cardiovascular anatomy was well depicted on all virtual 3D models (Figure 2). Conclusions: 3D virtual models are frequently being created to understand complex anatomy, influence surgical planning, and provide intra-operative guidance for patients with CHD. This novel free-breathing, self-navigated whole heart 3D radial sequence provided excellent image quality as compared to existing routine MR sequences. Furthermore, the (Figure Presented) superb image quality provided using this novel sequence makes it an excellent choice for the creation of 3D models
EMBASE:72183064
ISSN: 1097-6647
CID: 1950602

Compressed sensing with synchronized cardio-respiratory sparsity for free-breathing cine MRI: Initial comparative study on patients with arrhythmias [Meeting Abstract]

Feng, L; Axel, L; Latson, L A; Xu, J; Sodickson, D K; Otazo, R
Background: Evaluation of myocardial function with MRI is challenging on patients with impaired breath-hold (BH) capabilities or arrhythmias due to the difficulty of respiratory motion suspension and synchronization of cardiac cycles. Compressed sensing (CS) enables free breathing (FB) real-time cine imaging with improved spatiotemporal resolution, but conventional temporal sparsifying transforms do not account for respiratory motion, which limits its performance. In this work, we propose to acquire data continuously in FB using a golden-angle radial sampling scheme and reconstruct images with separated but synchronized cardiac and respiratory motion dimensions using self-detected motion signals. For patients with arrhythmias, both "normal" and "ectopic" cycles are reconstructed by sorting out cardiac cycles with different lengths. The performance of the proposed method was compared to Cartesian BH approach using retrospective ECG-gating in 9 patients. Methods: Both BH and FB cine sequences (b-SSFP) were implemented on a 1.5T MRI scanner (Avanto, Siemens). Imaging parameters for BH cine were: spatial resolution = 1.8 x 1.8 mm2, slice thickness = 8 mm, TR/TE = 2.5/1.25 ms, FA = 55degree. Imaging parameters for FB cine were: spatial resolution = 2 x 2 mm2, slice thickness = 8 mm, TR/TE2.8/1.4 ms, FA = 70degree. Both sequences achieved temporal resolution ~30-40 ms. Cardiac imaging was performed on 9 patients (mean age = 56; 4 had normal sinus rhythm, 4 had arrhythmias including bigeminy PVCs, atrial fibrillation and Mobitz I, 1 was incapable of prolonged BH). One short axis and one 4 chamber cine image set were acquired on each patient at ~12-15s per slice. In FB cine imaging, central k-space positions (green dots, Figure 1a) were used to extract cardiac and respiratory signals from coils near the heart and diaphragm respectively (Figure 1b). Data were sorted and synchronized to separately reconstruct cardiac cycles of different lengths at different respiratory states. A mul!
EMBASE:71330060
ISSN: 1097-6647
CID: 837022

Adult congenital heart disease: a practical approach

Latson, Larry Jr; Levsky, Jeffrey M; Haramati, Linda B
Adults with congenital heart disease (CHD) represent an increasing population both because anomalies that might have remained undiagnosed in the past are now being diagnosed later in life on imaging and because significant therapeutic advances have resulted in survival to adulthood of patients with complex CHD. In this article, we discuss simple and common complex congenital anomalies that are encountered in general practice including their incidence, associations, and expected postoperative appearances. We will describe an approach to segmental anatomy and situs evaluation and details of some of the common vascular anomalies, simple shunts, and complex CHDs to refine the imaging strategies and diagnostic acumen of radiologists interested in CHD who may not be practicing in specialized adult CHD centers. Key imaging appearances on chest radiography, protocoling tips for answering clinically relevant questions on computed tomography and magnetic resonance imaging, and the specific imaging appearances and common complications related to long-standing CHD in the adult and complications of treatment are reviewed for each entity.
PMID: 24149860
ISSN: 0883-5993
CID: 891512