Try a new search

Format these results:

Searched for:

person:lattar01

in-biosketch:yes

Total Results:

79


Effect of radiofrequency shield diameter on signal-to-noise ratio at ultra-high field MRI

Zhang, Bei; Adriany, Gregor; Delabarre, Lance; Radder, Jerahmie; Lagore, Russell; Rutt, Brian; Yang, Qing X; Ugurbil, Kamil; Lattanzi, Riccardo
PURPOSE/OBJECTIVE:In this work, we investigated how the position of the radiofrequency (RF) shield can affect the signal-to-noise ratio (SNR) of a receive RF coil. Our aim was to obtain physical insight for the design of a 10.5T 32-channel head coil, subject to the constraints on the diameter of the RF shield imposed by the head gradient coil geometry. METHOD/METHODS:We used full-wave numerical simulations to investigate how the SNR of an RF receive coil depends on the diameter of the RF shield at ultra-high magnetic field (UHF) strengths (≥7T). RESULTS:Our simulations showed that there is an SNR-optimal RF shield size at UHF strength, whereas at low field the SNR monotonically increases with the shield diameter. For a 32-channel head coil at 10.5T, an optimally sized RF shield could act as a cylindrical waveguide and increase the SNR in the brain by 27% compared to moving the shield as far as possible from the coil. Our results also showed that a separate transmit array between the RF shield and the receive array could considerably reduce SNR even if they are decoupled. CONCLUSION/CONCLUSIONS:At sufficiently high magnetic field strength, the design of local RF coils should be optimized together with the design of the RF shield to benefit from both near field and resonant modes.
PMID: 33464649
ISSN: 1522-2594
CID: 4760432

Magnetic-resonance-based electrical property mapping using Global Maxwell Tomography with an 8-channel head coil at 7 Tesla: a simulation study

Giannakopoulos, Ilias; Serralles, Jose Ec; Daniel, Luca; Sodickson, Daniel; Polimeridis, Athanasios; White, Jacob K; Lattanzi, Riccardo
OBJECTIVE:Global Maxwell Tomography (GMT) is a recently introduced volumetric technique for noninvasive estimation of electrical properties (EP) from magnetic resonance measurements. Previous work evaluated GMT using ideal radiofrequency (RF) excitations. The aim of this simulation study was to assess GMT performance with a realistic RF coil. METHODS:) inside heterogeneous head models for different RF shimming approaches, and used them as input for GMT to reconstruct EP for all voxels. RESULTS:) and absorbed power could be predicted with less than 0.5% error over the entire head. GMT could accurately detect a numerically inserted tumor. CONCLUSION/CONCLUSIONS:This work demonstrates that GMT can reliably reconstruct EP in realistic simulated scenarios using a tailored 8-channel RF coil design at 7T. Future work will focus on construction of the coil and optimization of GMT's robustness to noise, to enable in vivo GMT experiments. SIGNIFICANCE/CONCLUSIONS:GMT could provide accurate estimations of tissue EP, which could be used as biomarkers and could enable patient-specific estimation of RF power deposition, which is an unsolved problem for ultra-high-field magnetic resonance imaging.
PMID: 32365014
ISSN: 1558-2531
CID: 4429892

Scattering from Spheres: A New Look into an Old Problem

Ruello, Giuseppe; Lattanzi, Riccardo
In this work, we introduce a theoretical framework to describe the scattering from spheres. In our proposed framework, the total field in the outer medium is decomposed in terms of inward and outward electromagnetic fields, rather than in terms of incident and scattered fields, as in the classical Lorenz-Mie formulation. The fields are expressed as series of spherical harmonics, whose combination weights can be interpreted as reflection and transmission coefficients, which provides an intuitive understanding of the propagation and scattering phenomena. Our formulation extends the previously proposed theory of non-uniform transmission lines by introducing an expression for impedance transfer, which yields a closed-form solution for the fields inside and outside the sphere. The power transmitted in and scattered by the sphere can be also evaluated with a simple closed-form expression and related with the modulus of the reflection coefficient. We showed that our method is fully consistent with the classical Mie scattering theory. We also showed that our method can provide an intuitive physical interpretation of electromagnetic scattering in terms of impedance matching and resonances, and that it is especially useful for the case of inward traveling spherical waves generated by sources surrounding the scatterer.
PMCID:8171195
PMID: 34084560
ISSN: 2079-9292
CID: 4892032

A formalism to investigate the optimal transmit efficiency in radiofrequency shimming

Georgakis, Ioannis P; Polimeridis, Athanasios G; Lattanzi, Riccardo
Transmit efficiency specifies the amplitude of the magnetic resonance excitation field produced over a region of interest with respect to the radiofrequency (RF) power deposited in the sample. This metric is highly important at ultra-high field magnetic resonance imaging (≥7 T), where excitation inhomogeneities and electric field interference effects could prevent achieving the desired flip angle distribution while satisfying the power safety limits. The aim of this work was to introduce an approach to calculate a theoretical upper bound on the transmit efficiency (OPTXE) for RF shimming, independent from any particular coil design. We computed the OPTXE for head-mimicking uniform spherical samples and a realistic heterogeneous head model by maximizing the square of the net transmit field per unit power deposition. The corresponding RF shimming weights were used to combine the analytical surface current modes into ideal current patterns. OPTXE grew monotonically as the target excitation voxel approached the surface of the object, and overall decreased at higher field strengths, presenting similar trends in both the uniform sphere and heterogeneous head model. Arrays with an increasing number of loops could closely approach OPTXE in the central region of the object, but performance decreased closer to the surface and at higher magnetic field strengths. The performance of 32 loops for a two-dimensional excitation region at 7 T increased from 34% to 93% when they were arranged based on the shape of the ideal current patterns. OPTXE provides an absolute reference to evaluate coil designs and RF shimming algorithms, whereas ideal current patterns could serve as guidelines for novel coil designs at ultra-high field. The uniform sphere model enables rapid analytic simulations and provides a good approximation of the OPTXE distribution in a realistic heterogeneous head model with comparable dimensions.
PMID: 32725650
ISSN: 1099-1492
CID: 4540272

Magnetization transfer in magnetic resonance fingerprinting

Hilbert, Tom; Xia, Ding; Block, Kai Tobias; Yu, Zidan; Lattanzi, Riccardo; Sodickson, Daniel K; Kober, Tobias; Cloos, Martijn A
PURPOSE/OBJECTIVE:To study the effects of magnetization transfer (MT, in which a semi-solid spin pool interacts with the free pool), in the context of magnetic resonance fingerprinting (MRF). METHODS: RESULTS:values (~47 ms vs. ~35 ms) can be observed in white matter if MT is accounted for. CONCLUSION/CONCLUSIONS:with MRF. A model that encompasses MT effects can improve the accuracy of estimated relaxation parameters and allows quantification of the fractional pool size.
PMID: 31762101
ISSN: 1522-2594
CID: 4215582

Noninvasive Estimation of Electrical Properties from Magnetic Resonance Measurements via Global Maxwell Tomography and Match Regularization

Serralles, Jose Ec; Giannakopoulos, Ilias; Zhang, Bei; Ianniello, Carlotta; Cloos, Martijn A; Polimeridis, Athanasios G; White, Jacob K; Sodickson, Daniel K; Daniel, Luca; Lattanzi, Riccardo
OBJECTIVE:In this paper, we introduce Global Maxwell Tomography (GMT), a novel, volumetric technique that estimates electric conductivity and permittivity by solving an inverse scattering problem based on magnetic resonance measurements. METHODS:GMT relies on a fast volume integral equation solver, MARIE, for the forward path and a novel regularization method, Match Regularization, designed specifically for electrical properties estimation from noisy measurements. We performed simulations with three different tissue-mimicking numerical phantoms of different complexity, using synthetic transmit sensitivity maps with realistic noise levels as the measurements. We performed an experiment at 7T using an 8-channel coil and a uniform phantom. RESULTS:We showed that GMT could estimate relative permittivity and conductivity from noisy magnetic resonance measurements with an average error as low as 0.3% and 0.2%, respectively, over the entire volume of the numerical phantom. Voxel resolution did not affect GMT performance and is currently limited only by the memory of the Graphics Processing Unit. In the experiment, GMT could estimate electrical properties within 5% of the values measured with a dielectric probe. CONCLUSION/CONCLUSIONS:This work demonstrated the feasibility of GMT with Match Regularization, suggesting that it could be effective for accurate in vivo electrical property estimation. GMT does not rely on any symmetry assumption for the electromagnetic field and can be generalized to estimate also the spin magnetization, at the expenses of increased computational complexity. SIGNIFICANCE/CONCLUSIONS:GMT could provide insight into the distribution of electromagnetic fields inside the body, which represents one of the key ongoing challenges for various diagnostic and therapeutic applications.
PMID: 30908189
ISSN: 1558-2531
CID: 3776692

The "Loopole" Antenna: A Hybrid Coil Combining Loop and Electric Dipole Properties for Ultra-High-Field MRI

Lakshmanan, Karthik; Cloos, Martijn; Brown, Ryan; Lattanzi, Riccardo; Sodickson, Daniel K; Wiggins, Graham C
Purpose/UNASSIGNED:To revisit the "loopole," an unusual coil topology whose unbalanced current distribution captures both loop and electric dipole properties, which can be advantageous in ultra-high-field MRI. Methods/UNASSIGNED:Loopole coils were built by deliberately breaking the capacitor symmetry of traditional loop coils. The corresponding current distribution, transmit efficiency, and signal-to-noise ratio (SNR) were evaluated in simulation and experiments in comparison to those of loops and electric dipoles at 7 T (297 MHz). Results/UNASSIGNED:, the loopole demonstrated significant performance boost in either the transmit efficiency or SNR at the center of a dielectric sample when compared to a traditional loop. Modest improvements were observed when compared to an electric dipole. Conclusion/UNASSIGNED:The loopole can achieve high performance by supporting both divergence-free and curl-free current patterns, which are both significant contributors to the ultimate intrinsic performance at ultra-high field. While electric dipoles exhibit similar hybrid properties, loopoles maintain the engineering advantages of loops, such as geometric decoupling and reduced resonance frequency dependence on sample loading.
PMCID:8207246
PMID: 34140840
ISSN: 1552-5031
CID: 4917682

Optimized quantification of spin relaxation times in the hybrid state

Assländer, Jakob; Lattanzi, Riccardo; Sodickson, Daniel K; Cloos, Martijn A
PURPOSE/OBJECTIVE:The optimization and analysis of spin ensemble trajectories in the hybrid state-a state in which the direction of the magnetization adiabatically follows the steady state while the magnitude remains in a transient state. METHODS: RESULTS: CONCLUSIONS:
PMID: 31189025
ISSN: 1522-2594
CID: 3930102

Evaluation of a 16-channel transmitter for head imaging at 10.5T

Chapter by: Adriany, Gregor; Radder, Jerahmie; Tavaf, Nader; Lagore, Russell; Jungst, Steve; Woo, Myung Kyun; Grant, Andrea; Eryaman, Yigitcan; Zhang, Bei; Gundamony, Shajan; Lattanzi, Riccardo; Ugurbil, Kamil; Van De Moortele, Pierre Francois
in: Proceedings of the 2019 21st International Conference on Electromagnetics in Advanced Applications, ICEAA 2019 by
[S.l.] : Institute of Electrical and Electronics Engineers Inc., 2019
pp. 1171-1174
ISBN: 9781728105635
CID: 4219942

Rapid Radial T1 and T2 Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting

Cloos, Martijn A; Assländer, Jakob; Abbas, Batool; Fishbaugh, James; Babb, James S; Gerig, Guido; Lattanzi, Riccardo
BACKGROUND:Quantitative MRI can detect early changes in cartilage biochemical components, but its routine clinical implementation is challenging. PURPOSE/OBJECTIVE:along radial sections of the hip for accurate and reproducible multiparametric quantitative cartilage assessment in a clinically feasible scan time. STUDY TYPE/METHODS:Reproducibility, technical validation. SUBJECTS/PHANTOM/UNASSIGNED:A seven-compartment phantom and three healthy volunteers. FIELD STRENGTH/SEQUENCE/UNASSIGNED:at 3 T was developed. Automatic positioning and semiautomatic cartilage segmentation were implemented to improve consistency and simplify workflow. ASSESSMENT/RESULTS:Intra- and interscanner variability of our technique was assessed over multiple scans on three different MR scanners. STATISTICAL TESTS/UNASSIGNED:over six radial slices was calculated. Restricted maximum likelihood estimation of variance components was used to estimate intrasubject variances reflecting variation between results from the two scans using the same scanner (intrascanner variance) and variation among results from the three scanners (interscanner variance). RESULTS:. DATA CONCLUSION/UNASSIGNED:Our method, which includes slice positioning, model-based parameter estimation, and cartilage segmentation, is highly reproducible. It could enable employing quantitative hip cartilage evaluation for longitudinal and multicenter studies. LEVEL OF EVIDENCE/METHODS:1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.
PMID: 30584691
ISSN: 1522-2586
CID: 3560362