Try a new search

Format these results:

Searched for:

person:lippmm01

in-biosketch:yes

Total Results:

425


Ozone

Chapter by: Lippmann, Morton
in: Environmental toxicants : human exposures and their health effects by Lippmann, Morton; Leikauf, George D (Eds)
Hoboken, NJ : Wiley, 2020
pp. 783-853
ISBN: 9781119438915
CID: 4584172

Sulfur oxides

Chapter by: Lippmann, Morton
in: Environmental toxicants : human exposures and their health effects by Lippmann, Morton; Leikauf, George D (Eds)
Hoboken, NJ : Wiley, 2020
pp. 927-971
ISBN: 9781119438915
CID: 4584192

Environmental health science : recognition, evaluation, and control of chemical health hazards

Lippmann, Morton; Schlesinger, Richard B
New York : Oxford University Press, 2018
Extent: ix, 390 p. ; 25 cm
ISBN: 0190688645
CID: 3458502

The current inadequacy of exposure assessments and controls for airborne particulate matter (PM) mixtures

Lippmann, Morton
PMID: 28824176
ISSN: 1559-064x
CID: 2676272

In Memory of Paul J. Lioy, PhD, Deputy Editor of JESEE

Lippmann, Morton
PMID: 26329140
ISSN: 1559-064x
CID: 1761742

Repeated measures of inflammation, blood pressure, and heart rate variability associated with traffic exposures in healthy adults

Mirowsky, Jaime E; Peltier, Richard E; Lippmann, Morton; Thurston, George; Chen, Lung-Chi; Neas, Lucas; Diaz-Sanchez, David; Laumbach, Robert; Carter, Jacqueline D; Gordon, Terry
BACKGROUND: Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic locations while looking at a vast array of health endpoints in the same population. We evaluated inflammatory markers, heart rate variability (HRV), blood pressure, exhaled nitric oxide, and lung function in healthy participants after exposures to varying mixtures of traffic pollutants. METHODS: A repeated-measures, crossover study design was used in which 23 healthy, non-smoking adults had clinical cardiopulmonary and systemic inflammatory measurements taken prior to, immediately after, and 24 hours after intermittent walking for two hours in the summer months along three diverse roadways having unique emission characteristics. Measurements of PM2.5, PM10, black carbon (BC), elemental carbon (EC), and organic carbon (OC) were collected. Mixed effect models were used to assess changes in health effects associated with these specific pollutant classes. RESULTS: Minimal associations were observed with lung function measurements and the pollutants measured. Small decreases in BP measurements and rMSSD, and increases in IL-1beta and the low frequency to high frequency ratio measured in HRV, were observed with increasing concentrations of PM2.5 EC. CONCLUSIONS: Small, acute changes in cardiovascular and inflammation-related effects of microenvironmental exposures to traffic-related air pollution were observed in a group of healthy young adults. The associations were most profound with the diesel-source EC.
PMCID:4537534
PMID: 26276052
ISSN: 1476-069x
CID: 1721492

Health effects of World Trade Center (WTC) Dust: An unprecedented disaster's inadequate risk management

Lippmann, Morton; Cohen, Mitchell D; Chen, Lung-Chi
The World Trade Center (WTC) twin towers in New York City collapsed on 9/11/2001, converting much of the buildings' huge masses into dense dust clouds of particles that settled on the streets and within buildings throughout Lower Manhattan. About 80-90% of the settled WTC Dust, ranging in particle size from approximately 2.5 mum upward, was a highly alkaline mixture of crushed concrete, gypsum, and synthetic vitreous fibers (SVFs) that was readily resuspendable by physical disturbance and low-velocity air currents. High concentrations of coarse and supercoarse WTC Dust were inhaled and deposited in the conductive airways in the head and lungs, and subsequently swallowed, causing both physical and chemical irritation to the respiratory and gastroesophageal epithelia. There were both acute and chronic adverse health effects in rescue/recovery workers; cleanup workers; residents; and office workers, especially in those lacking effective personal respiratory protective equipment. The numerous health effects in these people were not those associated with the monitored PM2.5 toxicants, which were present at low concentrations, that is, asbestos fibers, transition and heavy metals, polyaromatic hydrocarbons or PAHs, and dioxins. Attention was never directed at the very high concentrations of the larger-sized and highly alkaline WTC Dust particles that, in retrospect, contained the more likely causal toxicants. Unfortunately, the initial focus of the air quality monitoring and guidance on exposure prevention programs on low-concentration components was never revised. Public agencies need to be better prepared to provide reliable guidance to the public on more appropriate means of exposure assessment, risk assessment, and preventive measures.
PMCID:4686342
PMID: 26058443
ISSN: 1547-6898
CID: 1626362

Ambient particulate matter air pollution and cardiopulmonary diseases

Thurston, George; Lippmann, Morton
Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal.
PMID: 26024349
ISSN: 1098-9048
CID: 1603812

Inhalation toxicology methods: the generation and characterization of exposure atmospheres and inhalational exposures

Chen, Lung-Chi; Lippmann, Morton
In this unit, the need for laboratory-based inhalation toxicology studies, the historical background on adverse health effects of airborne toxicants, and the benefits of advance planning for the building of analytic options into the study design to maximize the scientific gains to be derived from the investments in the study are outlined. The following methods are described: (1) the generation and characterization of exposure atmospheres for inhalation exposures in humans and laboratory animals; (2) the delivery and distribution into and within whole-body exposure chambers, head-only exposure chambers, face-masks, and mouthpieces or nasal catheters; (3) options for on-line functional assays during and between exposures; and (4) options for serial non-invasive assays of response. In doing so, a description beyond exposures to single agents and simple mixtures is presented, and included are methods for evaluating biological responses to complex environmental mixtures. It is also emphasized that great care should be taken in the design and execution of such studies so that the scientific returns can be maximized both initially, and in follow-up utilization of archived samples of the exposure atmospheres, excreta, and tissues collected for histology. (c) 2015 by John Wiley & Sons, Inc.
PMCID:4332412
PMID: 25645246
ISSN: 1934-9254
CID: 1456442

and toxicity of urban and rural particulate matter from California

Mirowsky, Jaime E; Jin, Lan; Thurston, George; Lighthall, David; Tyner, Tim; Horton, Lori; Galdanes, Karen; Chillrud, Steven; Ross, James; Pinkerton, Kent E; Chen, Lung Chi; Lippmann, Morton; Gordon, Terry
Particulate matter (PM) varies in chemical composition and mass concentration based on location, source, and particle size. This study sought to evaluate the in vitro and in vivo toxicity of coarse (PM10-2.5) and fine (PM25) PM samples collected at 5 diverse sites within California. Coarse and fine PM samples were collected simultaneously at 2 rural and 3 urban sites within California during the summer. A human pulmonary microvascular endothelial cell line (HPMEC-ST1.6R) was exposed to PM suspensions (50 mug/mL) and analyzed for reactive oxygen species (ROS) after 5 hours of treatment. In addition, FVB/N mice were exposed by oropharyngeal aspiration to 50 mug PM, and lavage fluid was collected 24 hrs post-exposure and analyzed for total protein and %PMNs. Correlations between trace metal concentrations, endotoxin, and biological endpoints were calculated, and the effect of particle size range, locale (urban vs. rural), and location was determined. Absolute principal factor analysis was used to identify pollution sources of PM from elemental tracers of those sources. Ambient PM elicited an ROS and pro-inflammatory-related response in the cell and mouse models, respectively. These responses were dependent on particle size, locale, and location. Trace elements associated with soil and traffic markers were most strongly linked to the adverse effects in vitro and in vivo. Particle size, location, source, and composition of PM collected at 5 locations in California affected the ROS response in human pulmonary endothelial cells and the inflammatory response in mice.
PMCID:4606878
PMID: 26478712
ISSN: 1352-2310
CID: 1810382