Try a new search

Format these results:

Searched for:

person:mauram01

in-biosketch:yes

Total Results:

41


Tissue context determines the penetrance of regulatory DNA variation

Halow, Jessica M; Byron, Rachel; Hogan, Megan S; Ordoñez, Raquel; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A; Maurano, Matthew T
Functional assessment of disease-associated sequence variation at non-coding regulatory elements is complicated by their high degree of context sensitivity to both the local chromatin and nuclear environments. Allelic profiling of DNA accessibility across individuals has shown that only a select minority of sequence variation affects transcription factor (TF) occupancy, yet low sequence diversity in human populations means that no experimental assessment is available for the majority of disease-associated variants. Here we describe high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells from 5 increasingly diverged strains of F1 hybrid mice. The high density of heterozygous sites in these hybrids enables precise quantification of effect size and cell-type specificity for hundreds of thousands of variants throughout the mouse genome. We show that chromatin-altering variants delineate characteristic sensitivity profiles for hundreds of TF motifs. We develop a compendium of TF-specific sensitivity profiles accounting for genomic context effects. Finally, we link maps of allelic accessibility to allelic transcript levels in the same samples. This work provides a foundation for quantitative prediction of cell-type specific effects of non-coding variation on TF activity, which will facilitate both fine-mapping and systems-level analyses of common disease-associated variation in human genomes.
PMID: 33990600
ISSN: 2041-1723
CID: 4868242

Dispersal dynamics of SARS-CoV-2 lineages during the first epidemic wave in New York City

Dellicour, Simon; Hong, Samuel L; Vrancken, Bram; Chaillon, Antoine; Gill, Mandev S; Maurano, Matthew T; Ramaswami, Sitharam; Zappile, Paul; Marier, Christian; Harkins, Gordon W; Baele, Guy; Duerr, Ralf; Heguy, Adriana
During the first phase of the COVID-19 epidemic, New York City rapidly became the epicenter of the pandemic in the United States. While molecular phylogenetic analyses have previously highlighted multiple introductions and a period of cryptic community transmission within New York City, little is known about the circulation of SARS-CoV-2 within and among its boroughs. We here perform phylogeographic investigations to gain insights into the circulation of viral lineages during the first months of the New York City outbreak. Our analyses describe the dispersal dynamics of viral lineages at the state and city levels, illustrating that peripheral samples likely correspond to distinct dispersal events originating from the main metropolitan city areas. In line with the high prevalence recorded in this area, our results highlight the relatively important role of the borough of Queens as a transmission hub associated with higher local circulation and dispersal of viral lineages toward the surrounding boroughs.
PMID: 34015049
ISSN: 1553-7374
CID: 4877512

A versatile platform for locus-scale genome rewriting and verification

Brosh, Ran; Laurent, Jon M; Ordoñez, Raquel; Huang, Emily; Hogan, Megan S; Hitchcock, Angela M; Mitchell, Leslie A; Pinglay, Sudarshan; Cadley, John A; Luther, Raven D; Truong, David M; Boeke, Jef D; Maurano, Matthew T
Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.
PMID: 33649239
ISSN: 1091-6490
CID: 4801272

SARS-CoV-2 genomic characterization and clinical manifestation of the COVID-19 outbreak in Uruguay

Elizondo, Victoria; Harkins, Gordon W; Mabvakure, Batsirai; Smidt, Sabine; Zappile, Paul; Marier, Christian; Maurano, Matthew; Perez, Victoria; Mazza, Natalia; Beloso, Carolina; Ifran, Silvana; Fernandez, Mariana; Santini, Andrea; Perez, Veronica; Estevez, Veronica; Nin, Matilde; Manrique, Gonzalo; Perez, Leticia; Ross, Fabiana; Boschi, Susana; Zubillaga, Maria Noel; Balleste, Raquel; Dellicour, Simon; Heguy, Adriana; Duerr, Ralf
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
PMID: 33306459
ISSN: 2222-1751
CID: 4709432

Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City Region

Maurano, Matthew T; Ramaswami, Sitharam; Zappile, Paul; Dimartino, Dacia; Boytard, Ludovic; Ribeiro-Dos-Santos, André M; Vulpescu, Nicholas A; Westby, Gael; Shen, Guomiao; Feng, Xiaojun; Hogan, Megan S; Ragonnet-Cronin, Manon; Geidelberg, Lily; Marier, Christian; Meyn, Peter; Zhang, Yutong; Cadley, John A; Ordoñez, Raquel; Luther, Raven; Huang, Emily; Guzman, Emily; Arguelles-Grande, Carolina; Argyropoulos, Kimon V; Black, Margaret; Serrano, Antonio; Call, Melissa E; Kim, Min Jae; Belovarac, Brendan; Gindin, Tatyana; Lytle, Andrew; Pinnell, Jared; Vougiouklakis, Theodore; Chen, John; Lin, Lawrence H; Rapkiewicz, Amy; Raabe, Vanessa; Samanovic, Marie I; Jour, George; Osman, Iman; Aguero-Rosenfeld, Maria; Mulligan, Mark J; Volz, Erik M; Cotzia, Paolo; Snuderl, Matija; Heguy, Adriana
Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epi-demiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.
PMID: 33093069
ISSN: 1549-5469
CID: 4642522

SARS-CoV-2 genomic characterization and clinical manifestation of the COVID-19 outbreak in Uruguay

Elizondo, Victoria; Harkins, Gordon W; Mabvakure, Batsirai; Smidt, Sabine; Zappile, Paul; Marier, Christian; Maurano, Matthew T; Perez, Victoria; Mazza, Natalia; Beloso, Carolina; Ifran, Silvana; Fernandez, Mariana; Santini, Andrea; Perez, Veronica; Estevez, Veronica; Nin, Matilde; Manrique, Gonzalo; Perez, Leticia; Ross, Fabiana; Boschi, Susana; Zubillaga, Maria Noel; Balleste, Raquel; Dellicour, Simon; Heguy, Adriana; Duerr, Ralf
COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.
PMCID:7553156
PMID: 33052352
ISSN: n/a
CID: 4637162

Sequencing identifies multiple, early introductions of SARS-CoV2 to New York City Region

Maurano, Matthew T; Ramaswami, Sitharam; Westby, Gael; Zappile, Paul; Dimartino, Dacia; Shen, Guomiao; Feng, Xiaojun; Ribeiro-Dos-Santos, Andre M; Vulpescu, Nicholas A; Black, Margaret; Hogan, Megan; Marier, Christian; Meyn, Peter; Zhang, Yutong; Cadley, John; Ordonez, Raquel; Luther, Raven; Huang, Emily; Guzman, Emily; Serrano, Antonio; Belovarac, Brendan; Gindin, Tatyana; Lytle, Andrew; Pinnell, Jared; Vougiouklakis, Theodore; Boytard, Ludovic; Chen, John; Lin, Lawrence H; Rapkiewicz, Amy; Raabe, Vanessa; Samanovic-Golden, Marie I; Jour, George; Osman, Iman; Aguero-Rosenfeld, Maria; Mulligan, Mark J; Cotzia, Paolo; Snuderl, Matija; Heguy, Adriana
Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 236 SARS-CoV2 sequences from cases in the New York City metropolitan area during the initial stages of the 2020 COVID-19 outbreak. The majority of cases throughout the region had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that the majority were most related to cases from Europe. Our data are consistent with numerous seed transmissions from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of real-time genomic surveillance in addition to traditional epidemiological indicators.
PMCID:7276014
PMID: 32511587
ISSN: n/a
CID: 4477902

Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region

Maurano, Matthew T.; Ramaswami, Sitharam; Zappile, Paul; Dimartino, Dacia; Boytard, Ludovic; Ribeiro-dos-Santos, Andre M.; Vulpescu, Nicholas A.; Westby, Gael; Shen, Guomiao; Feng, Xiaojun; Hogan, Megan S.; Ragonnet-Cronin, Manon; Geidelberg, Lily; Marier, Christian; Meyn, Peter; Zhang, Yutong; Cadley, John; Ordonez, Raquel; Luther, Raven; Huang, Emily; Guzman, Emily; Arguelles-Grande, Carolina; Argyropoulos, Kimon V.; Black, Margaret; Serrano, Antonio; Call, Melissa E.; Kim, Min Jae; Belovarac, Brendan; Gindin, Tatyana; Lytle, Andrew; Pinnell, Jared; Vougiouklakis, Theodore; Chen, John; Lin, Lawrence H.; Rapkiewicz, Amy; Raabe, Vanessa; Samanovic, Marie I.; Jour, George; Osman, Iman; Aguero-Rosenfeld, Maria; Mulligan, Mark J.; Volz, Erik M.; Cotzia, Paolo; Snuderl, Matija; Heguy, Adriana
ISI:000596075800008
ISSN: 1088-9051
CID: 5525422

Author Correction: An atlas of genetic influences on osteoporosis in humans and mice

Morris, John A; Kemp, John P; Youlten, Scott E; Laurent, Laetitia; Logan, John G; Chai, Ryan C; Vulpescu, Nicholas A; Forgetta, Vincenzo; Kleinman, Aaron; Mohanty, Sindhu T; Sergio, C Marcelo; Quinn, Julian; Nguyen-Yamamoto, Loan; Luco, Aimee-Lee; Vijay, Jinchu; Simon, Marie-Michelle; Pramatarova, Albena; Medina-Gomez, Carolina; Trajanoska, Katerina; Ghirardello, Elena J; Butterfield, Natalie C; Curry, Katharine F; Leitch, Victoria D; Sparkes, Penny C; Adoum, Anne-Tounsia; Mannan, Naila S; Komla-Ebri, Davide S K; Pollard, Andrea S; Dewhurst, Hannah F; Hassall, Thomas A D; Beltejar, Michael-John G; Adams, Douglas J; Vaillancourt, Suzanne M; Kaptoge, Stephen; Baldock, Paul; Cooper, Cyrus; Reeve, Jonathan; Ntzani, Evangelia E; Evangelou, Evangelos; Ohlsson, Claes; Karasik, David; Rivadeneira, Fernando; Kiel, Douglas P; Tobias, Jonathan H; Gregson, Celia L; Harvey, Nicholas C; Grundberg, Elin; Goltzman, David; Adams, David J; Lelliott, Christopher J; Hinds, David A; Ackert-Bicknell, Cheryl L; Hsu, Yi-Hsiang; Maurano, Matthew T; Croucher, Peter I; Williams, Graham R; Bassett, J H Duncan; Evans, David M; Richards, J Brent
In the version of this article initially published, in Fig. 5a, the data in the right column of 'DAAM2 gRNA1' were incorrectly plotted as circles indicating 'untreated' rather than as squares indicating 'treated'. The error has been corrected in the HTML and PDF versions of the article.
PMID: 30988516
ISSN: 1546-1718
CID: 3810422

Big DNA as a tool to dissect an age-related macular degeneration-associated haplotype

Laurent, Jon M; Fu, Xin; German, Sergei; Maurano, Matthew T; Zhang, Kang; Boeke, Jef D
Age-related Macular Degeneration (AMD) is a leading cause of blindness in the developed world, especially in aging populations, and is therefore an important target for new therapeutic development. Recently, there have been several studies demonstrating strong associations between AMD and sites of heritable genetic variation at multiple loci, including a highly significant association at 10q26. The 10q26 risk region contains two genes, HTRA1 and ARMS2, both of which have been separately implicated as causative for the disease, as well as dozens of sites of non-coding variation. To date, no studies have successfully pinpointed which of these variant sites are functional in AMD, nor definitively identified which genes in the region are targets of such regulatory variation. In order to efficiently decipher which sites are functional in AMD phenotypes, we describe a general framework for combinatorial assembly of large 'synthetic haplotypes' along with delivery to relevant disease cell types for downstream functional analysis. We demonstrate the successful and highly efficient assembly of a first-draft 119kb wild-type 'assemblon' covering the HTRA1/ARMS2 risk region. We further propose the parallelized assembly of a library of combinatorial variant synthetic haplotypes covering the region, delivery and analysis of which will identify functional sites and their effects, leading to an improved understanding of AMD development. We anticipate that the methodology proposed here is highly generalizable towards the difficult problem of identifying truly functional variants from those discovered via GWAS or other genetic association studies.
PMCID:6432742
PMID: 30944767
ISSN: 2516-1571
CID: 4007792