Try a new search

Format these results:

Searched for:

person:mezzav01

in-biosketch:yes

Total Results:

35


Digital spatial profiling to predict recurrence in grade 3 stage I lung adenocarcinoma

Chang, Stephanie H; Mezzano-Robinson, Valeria; Zhou, Hua; Moreira, Andre; Pillai, Raymond; Ramaswami, Sitharam; Loomis, Cynthia; Heguy, Adriana; Tsirigos, Aristotelis; Pass, Harvey I
OBJECTIVE:Early-stage lung adenocarcinoma is treated with local therapy alone, although patients with grade 3 stage I lung adenocarcinoma have a 50% 5-year recurrence rate. Our objective is to determine if analysis of the tumor microenvironment can create a predictive model for recurrence. METHODS:Thirty-four patients with grade 3 stage I lung adenocarcinoma underwent surgical resection. Digital spatial profiling was used to perform genomic (n = 31) and proteomic (n = 34) analyses of pancytokeratin positive and negative tumor cells. K-means clustering was performed on the top 50 differential genes and top 20 differential proteins, with Kaplan-Meier recurrence curves based on patient clustering. External validation of high-expression genes was performed with Kaplan-Meier plotter. RESULTS:There were no significant clinicopathologic differences between patients who did (n = 14) and did not (n = 20) have recurrence. Median time to recurrence was 806 days; median follow-up with no recurrence was 2897 days. K-means clustering of pancytokeratin positive genes resulted in a model with a Kaplan-Meier curve with concordance index of 0.75. K-means clustering for pancytokeratin negative genes was less successful at differentiating recurrence (concordance index 0.6). Genes upregulated or downregulated for recurrence were externally validated using available public databases. Proteomic data did not reach statistical significance but did internally validate the genomic data described. CONCLUSIONS:Genomic difference in lung adenocarcinoma may be able to predict risk of recurrence. After further validation, stratifying patients by this risk may help guide who will benefit from adjuvant therapy.
PMID: 37890657
ISSN: 1097-685x
CID: 5620342

MAVS signaling is required for preventing persistent chikungunya heart infection and chronic vascular tissue inflammation

Noval, Maria G; Spector, Sophie N; Bartnicki, Eric; Izzo, Franco; Narula, Navneet; Yeung, Stephen T; Damani-Yokota, Payal; Dewan, M Zahidunnabi; Mezzano, Valeria; Rodriguez-Rodriguez, Bruno A; Loomis, Cynthia; Khanna, Kamal M; Stapleford, Kenneth A
Chikungunya virus (CHIKV) infection has been associated with severe cardiac manifestations, yet, how CHIKV infection leads to heart disease remains unknown. Here, we leveraged both mouse models and human primary cardiac cells to define the mechanisms of CHIKV heart infection. Using an immunocompetent mouse model of CHIKV infection as well as human primary cardiac cells, we demonstrate that CHIKV directly infects and actively replicates in cardiac fibroblasts. In immunocompetent mice, CHIKV is cleared from cardiac tissue without significant damage through the induction of a local type I interferon response from both infected and non-infected cardiac cells. Using mice deficient in major innate immunity signaling components, we found that signaling through the mitochondrial antiviral-signaling protein (MAVS) is required for viral clearance from the heart. In the absence of MAVS signaling, persistent infection leads to focal myocarditis and vasculitis of the large vessels attached to the base of the heart. Large vessel vasculitis was observed for up to 60 days post infection, suggesting CHIKV can lead to vascular inflammation and potential long-lasting cardiovascular complications. This study provides a model of CHIKV cardiac infection and mechanistic insight into CHIKV-induced heart disease, underscoring the importance of monitoring cardiac function in patients with CHIKV infections.
PMCID:10400619
PMID: 37537212
ISSN: 2041-1723
CID: 5594762

Hedgehog and PDGF Signaling Intersect During Postnatal Lung Development

Yie, Ting-An; Loomis, Cynthia A; Nowatzky, Johannes; Khodadadi-Jamayran, Alireza; Lin, Ziyan; Cammer, Michael; Barnett, Clea; Mezzano, Valeria; Alu, Mark; Novick, Jackson A; Munger, John S; Kugler, Matthias C
Normal lung development critically depends on Hedgehog (HH) and Platelet-derived growth factor (PDGF) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH and PDGF signaling and their impact/convergence on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa and Pdgfra knockouts during secondary alveolar septation. Utilizing a dual signaling reporter, Gli1IZ;PdgfraEGFP
PMID: 36693140
ISSN: 1535-4989
CID: 5419542

Genomic and transcriptomic analyses of NF1-mutant melanoma identify potential targeted approach for treatment

Jour, George; Illa-Bochaca, Irineu; Ibrahim, Milad; Donnelly, Douglas; Zhu, Kelsey; Vega-Saenz de Miera, Eleazar; Vasudevaraja, Varshini; Mezzano, Valeria; Ramswami, Sitharam; Yeh, Yu-Hsin; Winskill, Carolyn; Betensky, Rebecca A; Mehnert, Janice; Osman, Iman
There is currently no targeted therapy to treat NF1-mutant melanomas. Herein, we compared the genomic and transcriptomic signatures of NF1-mutant and NF1-WT melanoma to reveal potential treatment targets for this subset of patients. Genomic alterations were verified using qPCR, and differentially expressed genes were independently validated using TCGA data, and immunohistochemistry (IHC). Digital spatial profiling (DSP) with multiplex IHC and immunofluorescence (IF) were used to validate the signatures. The efficacy of combinational regimens driven by these signatures was tested through in vitro assays using low-passage cell lines. Pathogenic NF1 mutations were identified in 27% cases. NF1-mutant melanoma expressed higher proliferative markers MK167 and CDC20 compared to NF1-WT (P=0.008), which was independently validated both in the TCGA dataset (P=0.01, P=0.03) and with IHC (P=0.013, P=0.036), respectively. DSP analysis showed upregulation of LY6E within the tumor cells [FDR<0.01, lg2FC>1], confirmed with multiplex IF showing co-localization of LY6E in melanoma cells. The combination of MEK and CDC20 co-inhibition induced both cytotoxic and cytostatic effects, decreasing CDC20 expression in multiple NF1-MUT cell lines. In conclusion, NF1-mutant melanoma is associated with a distinct genomic and transcriptomic profile. Our data support investigating CDC20 inhibition with MAPK pathway inhibitors as a targeted regimen in this melanoma subtype.
PMID: 35988589
ISSN: 1523-1747
CID: 5338052

High Systemic Type I Interferon Activity is Associated with Active Class III/IV Lupus Nephritis

Iwamoto, Taro; Dorschner, Jessica M; Selvaraj, Shanmugapriya; Mezzano, Valeria; Jensen, Mark A; Vsetecka, Danielle; Amin, Shreyasee; Makol, Ashima; Osborn, Thomas; Moder, Kevin; Chowdhary, Vaidehi R; Izmirly, Peter; Belmont, H Michael; Clancy, Robert M; Buyon, Jill P; Wu, Ming; Loomis, Cynthia A; Niewold, Timothy B
OBJECTIVE:Previous studies suggest a link between high serum type I interferon (IFN) and lupus nephritis (LN). We determined whether serum IFN activity is associated with subtypes of LN and studied renal tissues and cells to understand the impact of IFN in LN. METHODS:). Podocyte cell line gene expression was measured by real-time PCR. RESULTS:expression was not closely co-localized with pDCs. IFN directly activated podocyte cell lines to induce chemokines and proapoptotic molecules. CONCLUSION/CONCLUSIONS:Systemic high IFN is involved in the pathogenesis of severe LN. We do not find co-localization of pDCs with IFN signature in renal tissue, and instead observe the greatest intensity of IFN signature in glomerular areas, which could suggest a blood source of IFN.
PMID: 34782453
ISSN: 0315-162x
CID: 5049012

Simultaneous checkpoint inhibition and immune cell activation that is safely localized to solidtumors [Meeting Abstract]

Richieri, R A; Narula, N; Loomis, C A; Mezzano, V; Billimek, J; Reynolds, G T; Reutelingsperger, C; Zijlstra, A; Parseghian, M H
Unlike other checkpoint inhibitors, our targeted immunotherapeutic localizes to any solid tumor and simultaneouslyshields an agent of immuno suppression while presenting a signal for immunostimulation. Phosphatidylserine (PS)exposure on the extracellular surface of living tumor cells and their vasculatures provides one avenue by which thetumor microenvironment promotes immunosuppression. Extracellular surface PS is inherent to a tumor and itsvasculature, even for inoperable tumors, and its expression cannot be mutated nor affected by acquired drugresistance. Annexin A5 (AnxA5) is a direct, high-affinity PS-binding protein that localizes to cells with PS exposed onthe outer plasma membrane. In our studies, we conjugated a proprietary modified AnxA5, lacking cellularinternalization, to TNFalpha (AnxA5 -TNFalpha) to convert the immunosuppresive environs of a murine 4T1 triplenegative breast cancer (TNBC) into an immunostimulated one. This strategy localized the immune response to the tumor and minimized side effects, as evidenced by a lack of toxicity for up to 7 days in non-tumor bearing Balb/cfemale mice given up to 1 mg/kg. Proper assembly and functionality of AnxA5 -TNFalpha was verified simultaneouslyby ellipsometry, an optical technique similar to plasmon resonance. Fully assembled constructs were tested forbinding to PS coated slides. The degree of light polarization is proportional to the amount of PS bound by the AnxA5complex. Samples could be further incubated with TNF receptors to verify TNFalpha activity. Based on dose escalationstudies in 4T1 tumor-bearing mice where the TNBC tumors were grown in the mammary fat pads, optimal dosages were determined for AnxA5 -TNFalpha (18 mug) and AnxA5 alone as a control (180 mug). These doses were furthertested in a 4T1 growth inhibition study. Tumor size was tracked by caliper in two groups of mice (n=5/group)receiving drug treatment on days 12, 14 and 16 and a repeated measures ANOVA was conducted onmeasurements taken before, during and post-treatment. While median tumor size did not differ between control and drug treatment groups during the pre-treatment interval (p=0.84), there was a significant difference post-treatment(p<0.001) with mice receiving AnxA5 -TNFalpha having much smaller TNBC tumors. Tumors from the study were embedded in paraffin, sectioned (5 mum) and the overall immune cell content determined by H&E staining. Once it was evident there was a greater quantity of immune cells in AnxA5 -TNFalpha treated tumors vs. controls, sections were stained with validated antibodies to identify and count the immunoactivated T-cells, NK-cells and macrophages. There was a 3X greater mean percentage of CD8 and CD4 T-cells in mice receiving drug vs. control(p=0.03) along with 2.5X and 5X increases in NK-cells and M1 immunoactive macrophages, respectively.
Conclusion(s): Our AnxA5 -TNFalpha inhibits the PS inhibitor while simultaneously activating TNF activators!
EMBASE:637180376
ISSN: 2326-6074
CID: 5158452

Dissecting genomic heterogeneity in glioblastoma by spatial transcriptomic profiling [Meeting Abstract]

Galbraith, Kristyn; Tran, Ivy; Vasudevaraja, Varshini; Zhu, Kelsey; Mezzano, Valeria; Ward, Gyles; Ramaswami, Sitharam; Zeck, Briana; Chiriboga, Luis; Gao, Chengzhuo; Snuderl, Matija
ISI:000798368400051
ISSN: 0022-3069
CID: 5244302

Episodic Aspiration with Oral Commensals Induces a MyD88-dependent, Pulmonary Th17 Response that Mitigates Susceptibility to Streptococcus pneumoniae

Wu, Benjamin G; Sulaiman, Imran; Tsay, Jun-Chieh J; Perez, Luisanny; Franca, Brendan; Li, Yonghua; Wang, Jing; Gonzalez, Amber N; El-Ashmawy, Mariam; Carpenito, Joseph; Olsen, Evan; Sauthoff, Maya; Yie, Kevin; Liu, Xiuxiu; Shen, Nan; Clemente, Jose C; Kapoor, Bianca; Zangari, Tonia; Mezzano, Valeria; Loomis, Cynthia; Weiden, Michael D; Koralov, Sergei; D'Armiento, Jeanine; Ahuja, Sunil K; Wu, Xue-Ru; Weiser, Jeffrey N; Segal, Leopoldo N
Rationale Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with increased Th17 inflammatory phenotype. In this study we evaluated the microbial and host immune response dynamics after aspiration with a oral commensals using a preclinical mouse model. Methods Aspiration with a mixture of human oral commensals (MOC; Prevotella melaninogenica, Veillonella parvula, and Streptococcus mitis) was modeled in mice followed by variable time of sacrifice. Genetic background of mice included WT, MyD88 knock out and STAT3C. Measurements 16S rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host transcriptome sequencing was used to characterize host immune phenotype. Main Results While MOC aspiration correlated with lower airway dysbiosis that resolved within five days, it induced an extended inflammatory response associated with IL17-producing T-cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration prior to a respiratory challenge with S. pneumoniae led to a decreased in host's susceptibility to this pathogen. Conclusions Thus, in otherwise healthy mice, a single aspiration event with oral commensals are rapidly cleared from the lower airways, but induce a prolonged Th17 response that secondarily decreased susceptibility to respiratory pathogens. Translationally, these data implicate an immuno-protective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower airway pathogens.
PMID: 33166473
ISSN: 1535-4970
CID: 4664852

Characterization of Immune Microenvironment in Primary Tumor and Tumor Draining Lymph Nodes from Patients with Malignant Pleural Mesothelioma Using Digital Spatial Profiling [Meeting Abstract]

Henderson, I J; Mangalick, K; Mezzano, V; Loomis, C; Moreira, A; Pass, H; Sterman, D H
Rationale:Malignant pleural mesothelioma(MPM) has a poor prognosis with median survival of 12-24 months. We are not aware of prior studies examining the immune microenvironment in tumor draining lymph nodes (TDLN) in MPM. Our aim is to compare the tumor microenvironment(TME) and the microenvironment of TDLN. We hypothesize that the TME will display an immunosuppressive phenotype reflected in the TDLN.
Method(s):We performed digital spatial profiling(DSP) using the GeoMx (NanoString) platform on stored primary tumor and nodal biopsy specimens from 3 patients from our tumor bank. Samples from both primary tumor and lymph nodes were sectioned and labeled with pancytokeratin (CK). Tissue was then classified as "tumor" or "nontumor" using semi-automated segmentation based on pan-Cytokeratin (panK) labeling. The slides were then labeled with antibodies to 58 selected markers, with each unique antibody attached to a respective oligonucleotide. The tissue was exposed to UV light separately for tumor and non-tumor regions, cleaving the oligonucleotides from the attached antibodies. The oligonucleotides from the separate tumor and non-tumor regions were quantified using nCounter (NanoString).
Result(s):The non-neoplastic regions of the primary tumor contained higher expression of proteins associated with inflammatory cells including helper T-cells, cytotoxic T-cells, B-cells, macrophages, neutrophils, natural killer cells(Table 1). Furthermore, there was greater expression of immune checkpoint proteins, PD-L1 and CTLA-4, and CD163 and CD14, proteins associated with immunosuppressive macrophages, in the non-neoplastic region compared to the neoplastic region of the tumoe(Table 1). TDLNs contained similar levels of expression of lymphocyte markers, including those delineating cytotoxic T-cells and helper T-cells, as the primary tumor(Table 1). Despite this, TME expressed higher levels of T-cell exhaustion and immunsupression markers (FOXP3, LAG3, PD-1, CTLA-4) than TDLN(Table 1).
Conclusion(s):DSP is feasible in Formalin-fixed paraffin embedded (FFPE) mesothelioma specimens, providing a method for using quantitative immunopathology to study corresponding immune microenvironments. In our study, the non-tumor region of the primary tumor contained macrophages, lymphocytes, natural killer cells, and cancer-associated fibroblasts consistent with prior descriptions of the mesothelioma TME. Increased expression of immune checkpoint molecules in the non-tumor region suggests an immunosuppressive TME. TDLNs demonstrated similar lymphocyte markers, but without corresponding immune checkpoint expression of t suggesting the immunosuppressive phenotype of the TME may not be reflected in TDLNs. This pilot study is the first to use DSP to preliminarily characterize TDLNs in mesothelioma. We plan to apply this approach to stored additional MPM and NSCLC specimens to gain an in-depth understanding of the relationship between TME and TDLN
EMBASE:635309327
ISSN: 1535-4970
CID: 4915482

Lower airway dysbiosis affects lung cancer progression

Tsay, Jun-Chieh J; Wu, Benjamin G; Sulaiman, Imran; Gershner, Katherine; Schluger, Rosemary; Li, Yonghua; Yie, Ting-An; Meyn, Peter; Olsen, Evan; Perez, Luisannay; Franca, Brendan; Carpenito, Joseph; Iizumi, Tadasu; El-Ashmawy, Mariam; Badri, Michelle; Morton, James T; Shen, Nan; He, Linchen; Michaud, Gaetane; Rafeq, Samaan; Bessich, Jamie L; Smith, Robert L; Sauthoff, Harald; Felner, Kevin; Pillai, Ray; Zavitsanou, Anastasia-Maria; Koralov, Sergei B; Mezzano, Valeria; Loomis, Cynthia A; Moreira, Andre L; Moore, William; Tsirigos, Aristotelis; Heguy, Adriana; Rom, William N; Sterman, Daniel H; Pass, Harvey I; Clemente, Jose C; Li, Huilin; Bonneau, Richard; Wong, Kwok-Kin; Papagiannakopoulos, Thales; Segal, Leopoldo N
In lung cancer, enrichment of the lower airway microbiota with oral commensals commonly occurs and ex vivo models support that some of these bacteria can trigger host transcriptomic signatures associated with carcinogenesis. Here, we show that this lower airway dysbiotic signature was more prevalent in group IIIB-IV TNM stage lung cancer and is associated with poor prognosis, as shown by decreased survival among subjects with early stage disease (I-IIIA) and worse tumor progression as measured by RECIST scores among subjects with IIIB-IV stage disease. In addition, this lower airway microbiota signature was associated with upregulation of IL-17, PI3K, MAPK and ERK pathways in airway transcriptome, and we identified Veillonella parvula as the most abundant taxon driving this association. In a KP lung cancer model, lower airway dysbiosis with V. parvula led to decreased survival, increased tumor burden, IL-17 inflammatory phenotype and activation of checkpoint inhibitor markers.
PMID: 33177060
ISSN: 2159-8290
CID: 4663012