Try a new search

Format these results:

Searched for:

person:milleg05

Total Results:

157


Regulatory T Cells Keep Pancreatic Cancer at Bay [Comment]

Aykut, Berk; Chen, Ruonan; Miller, George
Although CD4+ FOXP3+ T regulatory (Treg) cells are well-known mediators of immunologic tolerance, their influences in the tumor microenviroment are incompletely understood. Writing in this issue of Cancer Discovery, Zhang and colleagues demonstrate that in pancreatic cancer, Treg cells promote the differentiation of tumor-restraining myofibroblastic cancer-associated fibroblasts, challenging the existing notion that Treg cells enable tumor progression.See related article by Zhang et al., p. 422.
PMID: 32127405
ISSN: 2159-8290
CID: 4340642

γδ T cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming

Torres-Hernandez, Alejandro; Wang, Wei; Nikiforov, Yuri; Tejada, Karla; Torres, Luisana; Kalabin, Aleksandr; Adam, Salma; Wu, Jingjing; Lu, Lu; Chen, Ruonan; Lemmer, Aaron; Camargo, Jimmy; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Kurz, Emma; Kochen Rossi, Juan A; Khan, Mohammed; Liria, Miguel; Sanchez, Gustavo; Wu, Nan; Su, Wenyu; Adams, Steven; Israr Ul Haq, Muhammad; Saad Farooq, Mohammad; Vasudevaraja, Varshini; Leinwand, Joshua; Miller, George
The recruitment and activation of inflammatory cells in the liver delineates the transition from hepatic steatosis to steatohepatitis. We found that in steatohepatitis, γδT cells are recruited to the liver by CCR2, CCR5, and NOD2 signaling and are skewed towards an IL-17A+ phenotype in an ICOS-ICOSL dependent manner. γδT cells exhibit a distinct Vγ4+ , PD1+ , Ly6C+ CD44+ phenotype in steatohepatitis. Moreover, γδT cells upregulate both CD1d, which is necessary for lipid-based antigens presentation, and the free fatty acid receptor CD36. γδT cells are stimulated to express IL-17A by palmitic acid and CD1d ligation. Deletion, depletion, and targeted interruption of γδT cell recruitment protects against diet-induced steatohepatitis and accelerates disease resolution. We demonstrate that hepatic γδT cells exacerbate steatohepatitis, independent of IL-17 expression, by mitigating conventional CD4+ T cell expansion and modulating their inflammatory program via CD1d-dependent VEGF expression.
PMID: 31529720
ISSN: 1527-3350
CID: 4089142

In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma

Li, Fei; Huang, Qingyuan; Luster, Troy A; Hu, Hai; Zhang, Hua; Ng, Wai-Lung; Khodadadi-Jamayran, Alireza; Wang, Wei; Chen, Ting; Deng, Jiehui; Ranieri, Michela; Fang, Zhaoyuan; Pyon, Val; Dowling, Catriona M; Bagdatlioglu, Ece; Almonte, Christina; Labbe, Kristen; Silver, Heather; Rabin, Alexandra R; Jani, Kandarp; Tsirigos, Aristotelis; Papagiannakopoulos, Thales; Hammerman, Peter S; Velcheti, Vamsidhar; Freeman, Gordon J; Qi, Jun; Miller, George; Wong, Kwok-Kin
Despite substantial progress in lung cancer immunotherapy, the overall response rate in KRAS-mutant lung adenocarcinoma (ADC) patients remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responses-such as epigenetic modulation of anti-tumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused sgRNA library, and performed an in vivo CRISPR screen in a KrasG12D/P53-/- (KP) lung ADC model. Our data showed that loss of the histone chaperone Asf1a in tumor cells sensitizes tumors to anti-PD-1 treatment. Mechanistic studies revealed that tumor cell-intrinsic Asf1a deficiency induced immunogenic macrophage differentiation in the tumor microenvironment by upregulating GM-CSF expression and potentiated T cell activation in combination with anti-PD-1. Our results provide rationale for a novel combination therapy consisting of ASF1A inhibition and anti-PD-1 immunotherapy.
PMID: 31744829
ISSN: 2159-8290
CID: 4208912

CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer

Zhang, Hua; Christensen, Camilla L; Dries, Ruben; Oser, Matthew G; Deng, Jiehui; Diskin, Brian; Li, Fei; Pan, Yuanwang; Zhang, Xuzhu; Yin, Yandong; Papadopoulos, Eleni; Pyon, Val; Thakurdin, Cassandra; Kwiatkowski, Nicholas; Jani, Kandarp; Rabin, Alexandra R; Castro, Dayanne M; Chen, Ting; Silver, Heather; Huang, Qingyuan; Bulatovic, Mirna; Dowling, Catríona M; Sundberg, Belen; Leggett, Alan; Ranieri, Michela; Han, Han; Li, Shuai; Yang, Annan; Labbe, Kristen E; Almonte, Christina; Sviderskiy, Vladislav O; Quinn, Max; Donaghue, Jack; Wang, Eric S; Zhang, Tinghu; He, Zhixiang; Velcheti, Vamsidhar; Hammerman, Peter S; Freeman, Gordon J; Bonneau, Richard; Kaelin, William G; Sutherland, Kate D; Kersbergen, Ariena; Aguirre, Andrew J; Yuan, Guo-Cheng; Rothenberg, Eli; Miller, George; Gray, Nathanael S; Wong, Kwok-Kin
Cyclin-dependent kinase 7 (CDK7) is a central regulator of the cell cycle and gene transcription. However, little is known about its impact on genomic instability and cancer immunity. Using a selective CDK7 inhibitor, YKL-5-124, we demonstrated that CDK7 inhibition predominately disrupts cell-cycle progression and induces DNA replication stress and genome instability in small cell lung cancer (SCLC) while simultaneously triggering immune-response signaling. These tumor-intrinsic events provoke a robust immune surveillance program elicited by T cells, which is further enhanced by the addition of immune-checkpoint blockade. Combining YKL-5-124 with anti-PD-1 offers significant survival benefit in multiple highly aggressive murine models of SCLC, providing a rationale for new combination regimens consisting of CDK7 inhibitors and immunotherapies.
PMID: 31883968
ISSN: 1878-3686
CID: 4251032

Targeting the interleukin-17 immune axis for cancer immunotherapy

Vitiello, Gerardo A; Miller, George
The role of IL-17 in cancer remains controversial. Emerging evidence suggests that during early oncogenesis IL-17 supports tumor growth, whereas in established tumors IL-17 production by γδ and Th17 cells potentiates antitumor immunity. Consequently, γδ and Th17 cells are attractive targets for immunotherapy in the IL-17 immune axis. To optimize IL-17-based immunotherapy, a deeper understanding of the cytokines dictating IL-17 production and the polarity of γδ and Th17 cells is critical. Here, we delve into the dichotomous roles of IL-17 in cancer and provide insight into the tumor microenvironment conducive for successful IL-17-based γδ and Th17 cell immunotherapy.
PMID: 31727783
ISSN: 1540-9538
CID: 4187022

Progress Toward Identifying Exact Proxies for Predicting Response to Immunotherapies

Filipovic, Aleksandra; Miller, George; Bolen, Joseph
Clinical value and utility of checkpoint inhibitors, a drug class targeting adaptive immune suppression pathways (PD-1, PDL-1, and CTLA-4), is growing rapidly and maintains status of a landmark achievement in oncology. Their efficacy has transformed life expectancy in multiple deadly cancer types (melanoma, lung cancer, renal/urothelial carcinoma, certain colorectal cancers, lymphomas, etc.). Despite significant clinical development efforts, therapeutic indication of approved checkpoint inhibitors are not as wide as the oncology community and patients would like them to be, potentially bringing into question their universal efficacy across tumor histologies. With the main goal of expanding immunotherapy applications, identifying of biomarkers to accurately predict therapeutic response and treatment related side-effects are a paramount need in the field. Specificities surrounding checkpoint inhibitors in clinic, such as unexpected tumor response patterns (pseudo- and hyper-progression), late responders, as well as specific immune mediated toxicities, complicate the management of patients. They stem from the complexities and dynamics of the tumor/host immune interactions, as well as baseline tumor biology. Search for clinically effective biomarkers therefore calls for a holistic approach, rather than implementation of a single analyte. The goal is to achieve dynamic and comprehensive acquisition, analyses and interpretation of immunological and biologic information about the tumor and the immune system, and to compute these parameters into an actionable, maximally predictive value at the individual patient level. Limitation delaying swift incorporation of validated immuno-oncology biomarkers span from standardized biospecimens acquisition and processing, selection of proficient biomarker discovery and validation methods, to establishing multidisciplinary consortiums and data sharing platforms. Multi-disciplinary efforts have already yielded some approved (PDL-1 and MSI-status) and other advanced tests (TMB, neoantigen pattern, and TIL infiltration rate). Importantly, clinical trial taskforces now recognize the imperative of the biomarker-driven trial design and execution, to enable translating biomarker discoveries into the clinical setting. This will ensure we utilize the "conspiracy" between the peripheral and intra-tumoral dynamic markers in shaping responses to checkpoint blockade, for the ultimate patient benefit.
PMCID:7092703
PMID: 32258034
ISSN: 2296-634x
CID: 4374572

Upregulation of ZIP14 and Altered Zinc Homeostasis in Muscles in Pancreatic Cancer Cachexia

Shakri, Ahmad Rushdi; Zhong, Timothy James; Ma, Wanchao; Coker, Courtney; Kim, Sean; Calluori, Stephanie; Scholze, Hanna; Szabolcs, Matthias; Caffrey, Thomas; Grandgenett, Paul M; Hollingsworth, Michael A; Tanji, Kurenai; Kluger, Michael D; Miller, George; Biswas, Anup Kumar; Acharyya, Swarnali
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer type in which the mortality rate approaches the incidence rate. More than 85% of PDAC patients experience a profound loss of muscle mass and function, known as cachexia. PDAC patients with this condition suffer from decreased tolerance to anti-cancer therapies and often succumb to premature death due to respiratory and cardiac muscle wasting. Yet, there are no approved therapies available to alleviate cachexia. We previously found that upregulation of the metal ion transporter, Zip14, and altered zinc homeostasis are critical mediators of cachexia in metastatic colon, lung, and breast cancer models. Here, we show that a similar mechanism is likely driving the development of cachexia in PDAC. In two independent experimental metastasis models generated from the murine PDAC cell lines, Pan02 and FC1242, we observed aberrant Zip14 expression and increased zinc ion levels in cachectic muscles. Moreover, in advanced PDAC patients, high levels of ZIP14 in muscles correlated with the presence of cachexia. These studies underscore the importance of altered ZIP14 function in PDAC-associated cachexia development and highlight a potential therapeutic opportunity for improving the quality of life and prolonging survival in PDAC patients.
PMID: 31861290
ISSN: 2072-6694
CID: 4335202

Microbes as biomarkers and targets in pancreatic cancer

Leinwand, Joshua C; Miller, George
PMID: 31530941
ISSN: 1759-4782
CID: 4098002

Harnessing the Microbiome for Pancreatic Cancer Immunotherapy

Vitiello, Gerardo A; Cohen, Deirdre J; Miller, George
Late-stage pancreatic cancer harbors a fibrotic and immune-excluded tumor microenvironment that impedes immunotherapy success. A key to unlocking pancreatic cancer immunotherapy may be treating early-stage pancreatic cancer, when peripancreatic inflammation promoted by the microbiome potentiates oncogenic signaling and suppresses innate and adaptive immunity. Hence, understanding the role of microbiota in pancreatic cancer initiation, progression, and immunosuppression is crucial. We propose that not only are microbiota targets for immunomodulation in this disease, but also that microbiome profiling has a potential role in pancreatic cancer screening. Furthermore, combining microbiome profiling with liquid and tissue biopsy may validate the early pancreatic cancer treatment approach of microbiome modulation and immunotherapy.
PMID: 31735286
ISSN: 2405-8025
CID: 4211972

The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL

Aykut, Berk; Pushalkar, Smruti; Chen, Ruonan; Li, Qianhao; Abengozar, Raquel; Kim, Jacqueline I; Shadaloey, Sorin A; Wu, Dongling; Preiss, Pamela; Verma, Narendra; Guo, Yuqi; Saxena, Anjana; Vardhan, Mridula; Diskin, Brian; Wang, Wei; Leinwand, Joshua; Kurz, Emma; Kochen Rossi, Juan A; Hundeyin, Mautin; Zambrinis, Constantinos; Li, Xin; Saxena, Deepak; Miller, George
Bacterial dysbiosis accompanies carcinogenesis in malignancies such as colon and liver cancer, and has recently been implicated in the pathogenesis of pancreatic ductal adenocarcinoma (PDA)1. However, the mycobiome has not been clearly implicated in tumorigenesis. Here we show that fungi migrate from the gut lumen to the pancreas, and that this is implicated in the pathogenesis of PDA. PDA tumours in humans and mouse models of this cancer displayed an increase in fungi of about 3,000-fold compared to normal pancreatic tissue. The composition of the mycobiome of PDA tumours was distinct from that of the gut or normal pancreas on the basis of alpha- and beta-diversity indices. Specifically, the fungal community that infiltrated PDA tumours was markedly enriched for Malassezia spp. in both mice and humans. Ablation of the mycobiome was protective against tumour growth in slowly progressive and invasive models of PDA, and repopulation with a Malassezia species-but not species in the genera Candida, Saccharomyces or Aspergillus-accelerated oncogenesis. We also discovered that ligation of mannose-binding lectin (MBL), which binds to glycans of the fungal wall to activate the complement cascade, was required for oncogenic progression, whereas deletion of MBL or C3 in the extratumoral compartment-or knockdown of C3aR in tumour cells-were both protective against tumour growth. In addition, reprogramming of the mycobiome did not alter the progression of PDA in Mbl- (also known as Mbl2) or C3-deficient mice. Collectively, our work shows that pathogenic fungi promote PDA by driving the complement cascade through the activation of MBL.
PMID: 31578522
ISSN: 1476-4687
CID: 4116342