Try a new search

Format these results:

Searched for:

person:modahl01

in-biosketch:true

Total Results:

11


Rolling circle replication of hepatitis delta virus RNA is carried out by two different cellular RNA polymerases

Macnaughton, Thomas B; Shi, Stephanie T; Modahl, Lucy E; Lai, Michael M C
Hepatitis delta virus (HDV) contains a viroid-like circular RNA that is presumed to replicate via a rolling circle replication mechanism mediated by cellular RNA polymerases. However, the exact mechanism of rolling circle replication for HDV RNA and viroids is not clear. Using our recently described cDNA-free transfection system (L. E. Modahl and M. M. Lai, J. Virol. 72:5449-5456, 1998), we have succeeded in detecting HDV RNA replication by metabolic labeling with [32P]orthophosphate in vivo and obtained direct evidence that HDV RNA replication generates high-molecular-weight multimeric species of HDV RNA, which are processed into monomeric and dimeric forms. Thus, these multimeric RNAs are the true intermediates of HDV RNA replication. We also found that HDV RNA synthesis is highly temperature sensitive, occurring most efficiently at 37 to 40 degrees C and becoming virtually undetectable at temperatures below 30 degrees C. Moreover, genomic HDV RNA synthesis was found to occur at a rate roughly 30-fold higher than that of antigenomic RNA synthesis. Finally, in lysolecithin-permeabilized cells, the synthesis of full-length antigenomic HDV RNA was completely resistant to high concentrations (100 microg/ml) of alpha-amanitin. In contrast, synthesis of genomic HDV RNA was totally inhibited by alpha-amanitin at concentrations as low as 2.5 microg/ml. Thus, these results suggest that genomic and antigenomic HDV RNA syntheses are performed by two different host cell enzymes. This observation, combined with our previous finding that hepatitis delta antigen mRNA synthesis is likely performed by RNA polymerase II, suggests that the different HDV RNA species are synthesized by different cellular transcriptional machineries.
PMCID:136092
PMID: 11907231
ISSN: 0022-538x
CID: 5111382