Try a new search

Format these results:

Searched for:

person:moonst01

Total Results:

83


Linking Gamma-H2AX Foci and Cancer in Rat Skin Exposed to Heavy Ions and Electron Radiation

Burns, Fredric J; Tang, Moon-Shong; Wu, Feng; Schmid, Ernst
This study uses acute doses of three test radiations, [Ar ions (L = 125 keVmu), Ne ions (L = 25 keVmu) and electron radiation] to examine a potential quantitative link between rat skin cancer induction and gamma-H2AX foci in rat keratinocytes exposed in vitro to radiations with comparable L values. Theory provided a testable link between cancer yield and gamma-H2AX foci yields: YCa(D,L)rat = (NF)2YAX(D,L)keratinocyte (eqn 1), where YCa(D,L) is cancers(rat) at 1.0 y, YAX(D,L) is in vitro gamma-H2AX foci(keratinocyte) , D is radiation dose, L is linear energy transfer, N is irradiated keratinocytes in vivo, and F is the error rate of end joining. An explicit expression for cancer yield was derived based on cancers arising in the ion track region in proportion to D and L (first term) and independently in proportion to D in the delta ray region in between the ion tracks (second term): YCa(D,L) = CCaLD + BCaD (eqn 1a). Parameters quantified include: CCa = 0.000589 +/- 0.000150 cancers-micron[rat(kev)Gy]; BCa = 0.0088 +/- 0.0035 cancers(ratGy), F = (8.18 +/- 0.91) x 10; N = (8.8 +/- 1.2) x 10 and (NF)2 = 0.036 +/- 0.006 cancer keratinocyte(rat H2AX foci). Verification of eqns (1) and (1a) and the constancy of F support the hypothesis that end-rejoining errors play a major role in radiation carcinogenesis in rat skin. Cancer yields per rat were consistently predictable based on gamma-H2AX foci yields in keratinocytes in vitro such that 27.8 H2AXfoci(keratinocyte) predicted 1.0 cancer(rat) at 1 y.
PMCID:4480601
PMID: 26107436
ISSN: 1538-5159
CID: 1640552

Oncogenic HRAS Activates Epithelial-to-Mesenchymal Transition and Confers Stemness to p53-Deficient Urothelial Cells to Drive Muscle Invasion of Basal Subtype Carcinomas

He, Feng; Melamed, Jonathan; Tang, Moon-Shong; Huang, Chuanshu; Wu, Xue-Ru
Muscle-invasive urothelial carcinomas of the bladder (MIUCB) exhibit frequent receptor tyrosine kinase alterations, but the precise nature of their contributions to tumor pathophysiology is unclear. Using mutant HRAS (HRAS*) as an oncogenic prototype, we obtained evidence in transgenic mice that RTK/RAS pathway activation in urothelial cells causes hyperplasia that neither progresses to frank carcinoma nor regresses to normal urothelium through a period of one year. This persistent hyperplastic state appeared to result from an equilibrium between promitogenic factors and compensatory tumor barriers in the p19-MDM2-p53-p21 axis and a prolonged G2 arrest. Conditional inactivation of p53 in urothelial cells of transgenic mice expressing HRAS* resulted in carcinoma in situ and basal-subtype MIUCB with focal squamous differentiation resembling the human counterpart. The transcriptome of microdissected MIUCB was enriched in genes that drive epithelial-to-mesenchymal transition, the upregulation of which is associated with urothelial cells expressing multiple progenitor/stem cell markers. Taken together, our results provide evidence for RTK/RAS pathway activation and p53 deficiency as a combinatorial theranostic biomarker that may inform the progression and treatment of urothelial carcinoma. Cancer Res; 75(10); 2017-28. (c)2015 AACR.
PMCID:4433590
PMID: 25795707
ISSN: 1538-7445
CID: 1663412

Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells

Lee, Hyun-Wook; Wang, Hsiang-Tsui; Weng, Mao-Wen; Hu, Yu; Chen, Wei-Sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A; Tang, Moon-Shong
Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS.
PMCID:4116500
PMID: 24939871
ISSN: 1949-2553
CID: 1036762

Cigarette smoke component acrolein modulates chromatin assembly by inhibiting histone acetylation

Chen, Danqi; Fang, Lei; Li, Hongjie; Tang, Moon-Shong; Jin, Chunyuan
Chromatin structure and gene expression are both regulated by nucleosome assembly. How environmental factors influence histone nuclear import and the nucleosome assembly pathway, leading to changes in chromatin organization and transcription, remains unknown. Acrolein (Acr) is an alpha,beta-unsaturated aldehyde, which is abundant in the environment, especially in cigarette smoke. It has recently been implicated as a potential major carcinogen of smoking-related lung cancer. Here we show that Acr forms adducts with histone proteins in vitro and in vivo and preferentially reacts with free histones rather than with nucleosomal histones. Cellular fractionation analyses reveal that Acr exposure specifically inhibits acetylations of N-terminal tails of cytosolic histones H3 and H4, modifications that are important for nuclear import and chromatin assembly. Notably, Acr exposure compromises the delivery of histone H3 into chromatin and increases chromatin accessibility. Moreover, changes in nucleosome occupancy at several genomic loci are correlated with transcriptional responses to Acr exposure. Our data provide new insights into mechanisms whereby environmental factors interact with the genome and influence genome function.
PMCID:3724627
PMID: 23770671
ISSN: 0021-9258
CID: 383082

Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies [Meeting Abstract]

Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung
ISI:000331220600037
ISSN: 0008-5472
CID: 853322

Effect of CpG methylation at different sequence context on acrolein- and BPDE-DNA binding and mutagenesis

Wang, Hsiang-Tsui; Weng, Mao-Wen; Chen, Wen-Chi; Yobin, Michael; Pan, Jishen; Chung, Fung-Lung; Wu, Xue-Ru; Rom, William; Tang, Moon-Shong
Acrolein (Acr), an alpha,beta-unsaturated aldehyde, is abundant in tobacco smoke and cooking and exhaust fumes. Acr induces mutagenic alpha- and gamma- hydroxy-1,N(2)-cyclic propano-deoxyguanosine adducts in normal human bronchial epithelial cells. Our earlier work has found that Acr-induced DNA damage preferentially occurs at lung cancer p53 mutational hotspots that contain CpG sites and that methylation at CpG sites enhances Acr-DNA binding at these sites. Based on these results, we hypothesized that this enhancement of Acr-DNA binding leads to p53 mutational hotspots in lung cancer. In this study, using a shuttle vector supF system, we tested this hypothesis by determining the effect of CpG methylation on Acr-DNA binding and the mutations in human lung fibroblasts. We found that CpG methylation enhances Acr-induced mutations significantly. Although CpG methylation enhances Acr-DNA binging at all CpG sites, it enhances mutations at selective-TCGA-sites. Similarly, we found that CpG methylation enhances benzo(a)pyrene diol epoxide binding at all -CpG- sites. However, the methylated CpG sequences in which benzo(a)pyrene diol epoxide-induced mutations are enhanced are different from the CpG sequences in which Acr-induced mutations are enhanced. CpG methylation greatly increases Acr-induced G to T and G to A mutation frequency to levels similar to these types of mutations found in the CpG sites in the p53 gene in tobacco smoke-related lung cancer. These results indicate that both CpG sequence context and the chemical nature of the carcinogens are crucial factors for determining the effect of CpG methylation on mutagenesis.
PMCID:3534198
PMID: 23042304
ISSN: 0143-3334
CID: 216532

Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies

Pan, Jishen; Awoyemi, Bisola; Xuan, Zhuoli; Vohra, Priya; Wang, Hsiang-Tsui; Dyba, Marcin; Greenspan, Emily; Fu, Ying; Creswell, Karen; Zhang, Lihua; Berry, Deborah; Tang, Moon-Shong; Chung, Fung-Lung
Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N(2)-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity toward Acr-dG, weaker reactivity toward crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N(2)-propanodeoxyguanosines, and weak or no reactivity toward 1,N(6)-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these antibodies, we developed assays to detect Acr-dG in vivo: first, a simple and quick FACS-based assay for detecting these adducts directly in cells; second, a highly sensitive direct ELISA assay for measuring Acr-dG in cells and tissues using only 1 mug of DNA without DNA digestion and sample enrichment; and third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA, and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion.
PMCID:3561715
PMID: 23126278
ISSN: 0893-228x
CID: 209662

Chromium (VI) induces both bulky DNA adducts and oxidative DNA damage at adenines and guanines in the p53 gene of human lung cells

Arakawa, Hirohumi; Weng, Mao-Wen; Chen, Wen-Chi; Tang, Moon-Shong
Chromium (VI) [Cr(VI)], a ubiquitous environmental carcinogen, is generally believed to induce mainly mutagenic binary and ternary Cr(III)-deoxyguanosine (dG)-DNA adducts in human cells. However, both adenine (A) and guanine (G) mutations are found in the p53 gene in Cr exposure-related lung cancer. Using UvrABC nuclease and formamidopyrimidine glycosylase (Fpg), and ligation-mediated PCR methods, we mapped the distribution of bulky DNA adducts (BDA) and oxidative DNA damage (ODD) in the p53 gene in Cr(VI)-treated human lung cells. We found that both BDA and ODD formed at 2'-deoxyadenosine (dA) and dG bases. To understand the causes for these Cr-induced DNA damages, we mapped the distribution of BDA adducts and ODD in the p53 gene DNA fragments induced by Cr(III), Cr(VI) and Cr(V), the three major cellular Cr forms. We found that (i) dA at -CA- is a major Cr(VI) binding site followed by -GG- and -G-. Cr(VI) does not bind to -GGG-, (ii) Cr(VI)-DNA binding specificity is distinctly different from the Cr(III)-DNA binding in which -GGG- and -GG- are preferential sites, (iii) Cr(V) binding sites include all of Cr(VI) and Cr(III)-DNA binding sites and (iv) Cr(VI) and Cr(V) induce Fpg-sensitive sites at -G-. Together, these results suggest that Cr(VI) induction of BDA and ODD at dA and dG residues is through Cr(V) intermediate. We propose that these Cr(VI)-induced BDA and ODD contribute to mutagenesis of the p53 gene that leads to lung carcinogenesis.
PMCID:3529560
PMID: 22791815
ISSN: 0143-3334
CID: 179079

Effect of carcinogenic acrolein on DNA repair and mutagenic susceptibility

Wang HT; Hu Y; Tong D; Huang J; Gu L; Wu XR; Chung FL; Li GM; Tang MS
Acrolein (Acr), a ubiquitous environmental contaminant, is a human carcinogen. Acr can react with DNA to form mutagenic alpha- and gamma-hydroxy-1, N2-cyclic propano-2-deoxyguanosine adducts (alpha-OH-Acr-dG and gamma-OH-Acr-dG). We demonstrate here that Acr-dG adducts can be efficiently repaired by the nucleotide excision repair (NER) pathway in normal human bronchial epithelia (NHBE) and lung fibroblasts (NHLF). However, the same adducts were poorly processed in cell lysates isolated from Acr-treated NHBE and NHLF, suggesting that Acr inhibits NER. In addition, we show that Acr treatment also inhibits base excision repair (BER) and mismatch repair (MMR). While Acr does not change the expression of XPA, XPC, hOGG1, PMS2 or MLH1 genes, it causes a reduction of XPA, XPC, hOGG1, PMS2 and MLH1 proteins; this effect, however, can be neutralized by the proteasome inhibitor, MG132. Acr treatment further enhances both bulky and oxidative DNA damage-induced mutagenesis. These results indicate that Acr not only damages DNA, but can also modify DNA repair proteins and further causes degradation of these modified repair proteins. We propose that these two detrimental effects contribute to Acr mutagenicity and carcinogenicity
PMCID:3320987
PMID: 22275365
ISSN: 1083-351x
CID: 150550

Acrolein induced DNA damage, mutagenicity and effect on DNA repair

Tang, Moon-Shong; Wang, Hsiang-Tsui; Hu, Yu; Chen, Wei-Sheng; Akao, Makoto; Feng, Zhaohui; Hu, Wenwei
Acrolein (Acr) is a ubiquitous environmental contaminant; it also can be generated endogenously by lipid peroxidation. Acr contains a carbonyl group and an olefinic double bond; it can react with many cellular molecules including amino acids, proteins and nucleic acids. In this review article we focus on updating information regarding: (i) Acr-induced DNA damage and methods of detection, (ii) repair of Acr-DNA damage, (iii) mutagenicity of Acr-DNA adducts, (iv) sequence specificity and methylation effect on Acr-DNA adduct formation and (v) the role of Acr in human cancer. We have found that Acr can inhibit DNA repair and induces mutagenic Acr-dG adducts and that the binding spectrum of Acr in the p53 gene in normal human bronchial epithelial cells is similar to the p53 mutational spectrum in lung cancer. Since Acr-DNA adduct has been identified in human lung tissue and Acr causes bladder cancer in human and rat models, we conclude that Acr is a major lung and bladder carcinogen, and its carcinogenicity arises via induction of DNA damage and inhibition of DNA repair
PMCID:4606864
PMID: 21714128
ISSN: 1613-4133
CID: 137067