Try a new search

Format these results:

Searched for:

person:moorek09

in-biosketch:yes

Total Results:

143


Advancing therapeutic targeting of the vulnerable plaque [Comment]

Newman, Alexandra A C; Cyr, Yannick; Moore, Kathryn J
PMID: 35567566
ISSN: 1522-9645
CID: 5215162

Rapid neutrophil mobilization by VCAM-1+endothelial cell-derived extracellular vesicles

Akbar, Naveed; Braithwaite, Adam T.; Corr, Emma M.; Koelwyn, Graeme J.; van Solingen, Coen; Cochain, Clement; Saliba, Antoine-Emmanuel; Corbin, Alastair; Pezzolla, Daniela; Jorgensen, Malene Moller; Baek, Rikke; Edgar, Laurienne; De Villiers, Carla; Gunadasa-Rohling, Mala; Banerjee, Abhirup; Paget, Daan; Lee, Charlotte; Hogg, Eleanor; Costin, Adam; Dhaliwal, Raman; Johnson, Errin; Krausgruber, Thomas; Riepsaame, Joey; Melling, Genevieve E.; Shanmuganathan, Mayooran; Bock, Christoph; Carter, David R. F.; Channon, Keith M.; Riley, Paul R.; Udalova, Irina A.; Moore, Kathryn J.; Anthony, Daniel; Choudhury, Robin P.
ISI:000756777000001
ISSN: 0008-6363
CID: 5182682

Two birds, one stone: NFATc3 controls dual actions of miR-204 in foam cell formation [Comment]

van Solingen, Coen; Moore, Kathryn J
PMID: 34571536
ISSN: 1522-9645
CID: 5107772

Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis

Koelwyn, Graeme J; Aboumsallem, Joseph Pierre; Moore, Kathryn J; de Boer, Rudolf A
The field of cardio-oncology has emerged in response to the increased risk of cardiovascular disease (CVD) in patients with cancer. However, recent studies suggest a more complicated CVD-cancer relationship, wherein development of CVD, either prior to or following a cancer diagnosis, can also lead to increased risk of cancer and worse outcomes for patients. In this review, we describe the current evidence base, across epidemiological as well as preclinical studies, which supports the emerging concept of 'reverse-cardio oncology', or CVD-induced acceleration of cancer pathogenesis.
PMID: 34582824
ISSN: 1095-8584
CID: 5061632

Chronic stress primes innate immune responses in mice and humans

Barrett, Tessa J; Corr, Emma M; van Solingen, Coen; Schlamp, Florencia; Brown, Emily J; Koelwyn, Graeme J; Lee, Angela H; Shanley, Lianne C; Spruill, Tanya M; Bozal, Fazli; de Jong, Annika; Newman, Alexandra A C; Drenkova, Kamelia; Silvestro, Michele; Ramkhelawon, Bhama; Reynolds, Harmony R; Hochman, Judith S; Nahrendorf, Matthias; Swirski, Filip K; Fisher, Edward A; Berger, Jeffrey S; Moore, Kathryn J
Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk.
PMID: 34496250
ISSN: 2211-1247
CID: 5012012

Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression

Schlegel, Martin Paul; Sharma, Monika; Brown, Emily J; Newman, Alexandra Ac; Cyr, Yannick; Afonso, Milessa Silva; Corr, Emma M; Koelwyn, Graeme J; van Solingen, Coen; Guzman, Jonathan; Farhat, Rubab; Nikain, Cyrus A; Shanley, Lianne C; Peled, Daniel; Schmidt, Ann Marie; Fisher, Edward A; Moore, Kathryn J
PMID: 34289717
ISSN: 1524-4571
CID: 4948372

miR-33 Silencing Reprograms the Immune Cell Landscape in Atherosclerotic Plaques

Afonso, Milessa Silva; Sharma, Monika; Schlegel, Martin Paul; van Solingen, Coen; Koelwyn, Graeme J; Shanley, Lianne C; Beckett, Lauren; Peled, Daniel; Rahman, Karishma; Giannarelli, Chiara; Li, Huilin; Brown, Emily J; Khodadadi-Jamayran, Alireza; Fisher, Edward A; Moore, Kathryn J
Rationale: MicroRNA-33 post-transcriptionally represses genes involved in lipid metabolism and energy homeostasis. Targeted inhibition of miR-33 increases plasma HDL cholesterol and promotes atherosclerosis regression, in part, by enhancing reverse cholesterol transport and dampening plaque inflammation. However, how miR-33 reshapes the immune microenvironment of plaques remains poorly understood. Objective: To define how miR-33 inhibition alters the dynamic balance and transcriptional landscape of immune cells in atherosclerotic plaques. Methods and Results: We used single cell RNA-sequencing of aortic CD45+ cells, combined with immunohistologic, morphometric and flow cytometric analyses to define the changes in plaque immune cell composition, gene expression and function following miR-33 inhibition. We report that anti-miR-33 treatment of Ldlr-/- mice with advanced atherosclerosis reduced plaque burden and altered the plaque immune cell landscape by shifting the balance of pro- and anti-atherosclerotic macrophage and T cell subsets. By quantifying the kinetic processes that determine plaque macrophage burden, we found that anti-miR-33 reduced levels of circulating monocytes and splenic myeloid progenitors, decreased macrophage proliferation and retention, and promoted macrophage attrition by apoptosis and efferocytotic clearance. scRNA-sequencing of aortic arch plaques showed that anti-miR-33 reduced the frequency of MHCIIhi "inflammatory" and Trem2hi "metabolic" macrophages, but not tissue resident macrophages. Furthermore, anti-miR-33 led to derepression of distinct miR-33 target genes in the different macrophage subsets: in resident and Trem2hi macrophages, anti-miR-33 relieved repression of miR-33 target genes involved in lipid metabolism (e.g., Abca1, Ncoa1, Ncoa2, Crot), whereas in MHCIIhi macrophages, anti-miR-33 upregulated target genes involved in chromatin remodeling and transcriptional regulation. Anti-miR-33 also reduced the accumulation of aortic CD8+ T cells and CD4+ Th1 cells, and increased levels of FoxP3+ regulatory T cells in plaques, consistent with an immune-dampening effect on plaque inflammation. Conclusions: Our results provide insight into the immune mechanisms and cellular players that execute anti-miR-33's atheroprotective actions in the plaque.
PMID: 33593073
ISSN: 1524-4571
CID: 4786732

MicroRNA-33 Inhibits Adaptive Thermogenesis and Adipose Tissue Beiging

Afonso, Milessa Silva; Verma, Narendra; van Solingen, Coen; Cyr, Yannick; Sharma, Monika; Perie, Luce; Corr, Emma M; Schlegel, Martin; Shanley, Lianne C; Peled, Daniel; Yoo, Jenny Y; Schmidt, Ann Marie; Mueller, Elisabetta; Moore, Kathryn J
OBJECTIVE:in vitro and in vivo. Treatment of mice with inhibitors of miR-33 increased expression of these miR-33 target genes in brown and subcutaneous white adipose tissue, upregulating expression of UCP1, and rendering mice resistant to cold challenge. CONCLUSIONS:Collectively, our findings demonstrate that miR-33 targets key genes involved in BAT activation and white adipose beiging and expand our understanding of how miR-33 coordinately regulates pathways involved in metabolic homeostasis.
PMID: 33657886
ISSN: 1524-4636
CID: 4800362

High-Throughput Screening Identifies MicroRNAs Regulating Human PCSK9 and Hepatic Low-Density Lipoprotein Receptor Expression

van Solingen, Coen; Oldebeken, Scott R; Salerno, Alessandro G; Wanschel, Amarylis C B A; Moore, Kathryn J
Investigations into the regulatory mechanisms controlling cholesterol homeostasis have proven fruitful in identifying low-density lipoprotein (LDL)-lowering therapies to reduce the risk of atherosclerotic cardiovascular disease. A major advance was the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a secreted protein that binds the LDL receptor (LDLR) on the cell surface and internalizes it for degradation, thereby blunting its ability to take up circulating LDL. The discovery that loss-of-function mutations in PCSK9 lead to lower plasma levels of LDL cholesterol and protection from cardiovascular disease led to the therapeutic development of PCSK9 inhibitors at an unprecedented pace. However, there remain many gaps in our understanding of PCSK9 regulation and biology, including its posttranscriptional control by microRNAs. Using a high-throughput region(3'-UTR) of human microRNA library screen, we identified microRNAs targeting the 3' untranslated region of human PCSK9. The top 35 hits were confirmed by large-format PCSK9 3'-UTR luciferase assays, and 10 microRNAs were then selected for further validation in hepatic cells, including effects on PCSK9 secretion and LDLR cell surface expression. These studies identified seven novel microRNAs that reduce PCSK9 expression, including miR-221-5p, miR-342-5p, miR-363-5p, miR-609, miR-765, and miR-3165. Interestingly, several of these microRNAs were also found to target other genes involved in LDLR regulation and potently upregulate LDLR cell surface expression in hepatic cells. Together, these data enhance our understanding of post-transcriptional regulators of PCSK9 and their potential for therapeutic manipulation of hepatic LDLR expression.
PMCID:8310920
PMID: 34322524
ISSN: 2297-055x
CID: 4949862

Myocardial infarction accelerates breast cancer via innate immune reprogramming

Koelwyn, Graeme J; Newman, Alexandra A C; Afonso, Milessa S; van Solingen, Coen; Corr, Emma M; Brown, Emily J; Albers, Kathleen B; Yamaguchi, Naoko; Narke, Deven; Schlegel, Martin; Sharma, Monika; Shanley, Lianne C; Barrett, Tessa J; Rahman, Karishma; Mezzano, Valeria; Fisher, Edward A; Park, David S; Newman, Jonathan D; Quail, Daniela F; Nelson, Erik R; Caan, Bette J; Jones, Lee W; Moore, Kathryn J
Disruption of systemic homeostasis by either chronic or acute stressors, such as obesity1 or surgery2, alters cancer pathogenesis. Patients with cancer, particularly those with breast cancer, can be at increased risk of cardiovascular disease due to treatment toxicity and changes in lifestyle behaviors3-5. While elevated risk and incidence of cardiovascular events in breast cancer is well established, whether such events impact cancer pathogenesis is not known. Here we show that myocardial infarction (MI) accelerates breast cancer outgrowth and cancer-specific mortality in mice and humans. In mouse models of breast cancer, MI epigenetically reprogrammed Ly6Chi monocytes in the bone marrow reservoir to an immunosuppressive phenotype that was maintained at the transcriptional level in monocytes in both the circulation and tumor. In parallel, MI increased circulating Ly6Chi monocyte levels and recruitment to tumors and depletion of these cells abrogated MI-induced tumor growth. Furthermore, patients with early-stage breast cancer who experienced cardiovascular events after cancer diagnosis had increased risk of recurrence and cancer-specific death. These preclinical and clinical results demonstrate that MI induces alterations in systemic homeostasis, triggering cross-disease communication that accelerates breast cancer.
PMID: 32661390
ISSN: 1546-170x
CID: 4528032