Try a new search

Format these results:

Searched for:

person:muelle01

in-biosketch:yes

Total Results:

55


Zinc finger protein ZNF638 regulates triglyceride metabolism via ANGPTL8 in an estrogen dependent manner

Meng, Meiyao; Cao, Yuxiang; Qiu, Jin; Shan, Guangyu; Wang, Yingwen; Zheng, Ying; Guo, Mingwei; Yu, Jian; Ma, Yuandi; Xie, Cen; Hu, Cheng; Xu, Lingyan; Mueller, Elisabetta; Ma, Xinran
BACKGROUND AND AIM/OBJECTIVE:Triglyceride (TG) levels are closely related to obesity, fatty liver and cardiovascular diseases, while the regulatory factors and mechanism for triglyceride homeostasis are still largely unknown. Zinc Finger Protein 638 (ZNF638) is a newly discovered member of zinc finger protein family for adipocyte function in vitro. The aim of the present work was to investigate the role of ZNF638 in regulating triglyceride metabolism in mice. METHODS:We generated ZNF638 adipose tissue specific knockout mice (ZNF638 FKO) by cross-breeding ZNF638 flox to Adiponectin-Cre mice and achieved adipose tissue ZNF638 overexpression via adenoviral mediated ZNF638 delivery in inguinal adipose tissue (iWAT) to examined the role and mechanisms of ZNF638 in fat biology and whole-body TG homeostasis. RESULTS:Although ZNF638 FKO mice showed similar body weights, body composition, glucose metabolism and serum parameters compared to wild-type mice under chow diet, serum TG levels in ZNF638 FKO mice were increased dramatically after refeeding compared to wild-type mice, accompanied with decreased endothelial lipoprotein lipase (LPL) activity and increased lipid absorption of the small intestine. Conversely, ZNF638 overexpression in iWAT reduced serum TG levels while enhanced LPL activity after refeeding in female C57BL/6J mice and obese ob/ob mice. Specifically, only female mice exhibited altered TG metabolism upon ZNF638 expression changes in fat. Mechanistically, RNA-sequencing analysis revealed that the TG regulator angiopoietin-like protein 8 (Angptl8) was highly expressed in iWAT of female ZNF638 FKO mice. Neutralizing circulating ANGPTL8 in female ZNF638 FKO mice abolished refeeding-induced TG elevation. Furthermore, we demonstrated that ZNF638 functions as a transcriptional repressor by recruiting HDAC1 for histone deacetylation and broad lipid metabolic gene suppression, including Angptl8 transcription inhibition. Moreover, we showed that the sexual dimorphism is possibly due to estrogen dependent regulation on ZNF638-ANGPTL8 axis. CONCLUSION/CONCLUSIONS:We revealed a role of ZNF638 in the regulation of triglyceride metabolism by affecting Angptl8 transcriptional level in adipose tissue with sexual dimorphism.
PMID: 38211696
ISSN: 1532-8600
CID: 5628692

Browning of adipose tissue and increased thermogenesis induced by Methotrexate

Verma, Narendra; Perie, Luce; Corciulo, Carmen; Leucht, Philipp; Ramkhelawon, Bhama; Cronstein, Bruce N; Mueller, Elisabetta
Methotrexate (MTX) is widely used for the treatment of rheumatoid arthritis due to its well-known anti-inflammatory role in immune cells but its impact on brown and beige adipose tissue biology has not yet been investigated. Here, we present the novel evidence that MTX treatment increases the gene expression of thermogenic genes in brown and beige adipose tissues in a fat cell autonomous manner. Furthermore, we show that treatment of mice with MTX is associated with cold resistance, improved glucose homeostasis, decreased inflammation, and reduced hepatosteatosis in high-fat diet states. Overall, our data provide novel evidence of a role of MTX on thermogenic tissues not previously appreciated.
PMCID:8565234
PMID: 34761170
ISSN: 2573-9832
CID: 5050652

The forkhead box transcription factor FoxP4 regulates thermogenic programs in adipocytes

Perie, Luce; Verma, Narendra; Mueller, Elisabetta
Forkhead box transcription factors have been shown to be involved in various developmental and differentiation processes. In particular, members of the FoxP family have been previously characterized in depth for their participation in the regulation of lung and neuronal cell differentiation and T-cell development and function; however, their role in adipocyte functionality has not yet been investigated. Here, we report for the first time that Forkhead box P4 (FoxP4) is expressed at high levels in subcutaneous fat depots and mature thermogenic adipocytes. Through molecular and gene expression analyses, we revealed that FoxP4 is induced in response to thermogenic stimuli, both in vivo and in isolated cells, and is regulated directly by the heat shock factor protein 1 through a heat shock response element identified in the proximal promoter region of FoxP4. Further detailed analysis involving chromatin immunoprecipitation and luciferase assays demonstrated that FoxP4 directly controls the levels of uncoupling protein 1, a key regulator of thermogenesis that uncouples fatty acid oxidation from ATP production. In addition, through our gain-of-function and loss-of-function studies, we showed that FoxP4 regulates the expression of a number of classic brown and beige fat genes and affects oxygen consumption in isolated adipocytes. Overall, our data demonstrate for the first time the novel role of FoxP4 in the regulation of thermogenic adipocyte functionality.
PMCID:8411233
PMID: 34384787
ISSN: 1539-7262
CID: 5010862

MicroRNA-33 Inhibits Adaptive Thermogenesis and Adipose Tissue Beiging

Afonso, Milessa Silva; Verma, Narendra; van Solingen, Coen; Cyr, Yannick; Sharma, Monika; Perie, Luce; Corr, Emma M; Schlegel, Martin; Shanley, Lianne C; Peled, Daniel; Yoo, Jenny Y; Schmidt, Ann Marie; Mueller, Elisabetta; Moore, Kathryn J
OBJECTIVE:in vitro and in vivo. Treatment of mice with inhibitors of miR-33 increased expression of these miR-33 target genes in brown and subcutaneous white adipose tissue, upregulating expression of UCP1, and rendering mice resistant to cold challenge. CONCLUSIONS:Collectively, our findings demonstrate that miR-33 targets key genes involved in BAT activation and white adipose beiging and expand our understanding of how miR-33 coordinately regulates pathways involved in metabolic homeostasis.
PMID: 33657886
ISSN: 1524-4636
CID: 4800362

PPARγ agonists delay age-associated metabolic disease and extend longevity

Xu, Lingyan; Ma, Xinran; Verma, Narendra; Perie, Luce; Pendse, Jay; Shamloo, Sama; Marie Josephson, Anne; Wang, Dongmei; Qiu, Jin; Guo, Mingwei; Ping, Xiaodan; Allen, Michele; Noguchi, Audrey; Springer, Danielle; Shen, Fei; Liu, Caizhi; Zhang, Shiwei; Li, Lingyu; Li, Jin; Xiao, Junjie; Lu, Jian; Du, Zhenyu; Luo, Jian; Aleman, Jose O; Leucht, Philipp; Mueller, Elisabetta
Aging leads to a number of disorders caused by cellular senescence, tissue damage, and organ dysfunction. It has been reported that anti-inflammatory and insulin-sensitizing compounds delay, or reverse, the aging process and prevent metabolic disorders, neurodegenerative disease, and muscle atrophy, improving healthspan and extending lifespan. Here we investigated the effects of PPARγ agonists in preventing aging and increasing longevity, given their known properties in lowering inflammation and decreasing glycemia. Our molecular and physiological studies show that long-term treatment of mice at 14 months of age with low doses of the PPARγ ligand rosiglitazone (Rosi) improved glucose metabolism and mitochondrial functionality. These effects were associated with decreased inflammation and reduced tissue atrophy, improved cognitive function, and diminished anxiety- and depression-like conditions, without any adverse effects on cardiac and skeletal functionality. Furthermore, Rosi treatment of mice started when they were 14 months old was associated with lifespan extension. A retrospective analysis of the effects of the PPARγ agonist pioglitazone (Pio) on longevity showed decreased mortality in patients receiving Pio compared to those receiving a PPARγ-independent insulin secretagogue glimepiride. Taken together, these data suggest the possibility of using PPARγ agonists to promote healthy aging and extend lifespan.
PMCID:7681041
PMID: 33219735
ISSN: 1474-9726
CID: 4679992

The mRNA levels of heat shock factor-1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3

Verma, Narendra; Perie, Luce; Mueller, Elisabetta
Heat shock factor-1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role of HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remains unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot, and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at -258 to -250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues.
PMID: 32184357
ISSN: 1083-351x
CID: 4353562

Transcriptional Regulation of ZNF638 in Thermogenic Cells by the cAMP Response Element Binding Protein in Male Mice

Perie, Luce; Verma, Narendra; Xu, Lingyan; Ma, Xinran; Mueller, Elisabetta
Zinc finger factors are implicated in a variety of cellular processes, including adipose tissue differentiation and thermogenesis. We have previously demonstrated that zinc finger protein 638 (ZNF638) is a transcriptional coactivator acting as an early regulator of adipogenesis in vitro. In this study, we show, to our knowledge for the first time, that, in vivo, ZNF638 abounds selectively in mature brown and subcutaneous fat tissues and in fully differentiated thermogenic adipocytes. Furthermore, gene expression studies revealed that ZNF638 is upregulated by cAMP modulators in vitro and by cold exposure and by pharmacological stimulation of β-adrenergic signaling in vivo. In silico analysis of the upstream regulatory region of the ZNF638 gene identified two putative cAMP response elements within 500 bp of the ZNF638 transcription start site. Detailed molecular analysis involving EMSA and chromatin immunoprecipitation assays demonstrated that cAMP response element binding protein (CREB) binds to these cAMP response element regions of the ZNF638 promoter, and functional studies revealed that CREB is necessary and sufficient to regulate the levels of ZNF638 transcripts. Taken together, these results demonstrate that ZNF638 is selectively expressed in mature thermogenic adipocytes and tissues and that its induction in response to classic stimuli that promote heat generation is mediated via CREB signaling, pointing to a possible novel role of ZNF638 in brown and beige fat tissues.
PMCID:6855216
PMID: 31745529
ISSN: 2472-1972
CID: 4690782

Breast milk, formula, the microbiome and overweight

Mueller, Elisabetta; Blaser, Martin
PMID: 30022100
ISSN: 1759-5037
CID: 3202212

Ablation of PPARγ in subcutaneous fat exacerbates age-associated obesity and metabolic decline

Xu, Lingyan; Ma, Xinran; Verma, Narendra Kumar; Wang, Dongmei; Gavrilova, Oksana; Proia, Richard L; Finkel, Toren; Mueller, Elisabetta
It is well established that aging is associated with metabolic dysfunction such as increased adiposity and impaired energy dissipation; however, the transcriptional mechanisms regulating energy balance during late life stages have not yet been fully elucidated. Here, we show that ablation of the nuclear receptor PPARγ specifically in inguinal fat tissue in aging mice is associated with increased fat tissue expansion and insulin resistance. These metabolic effects are accompanied by decreased thermogenesis, reduced levels of brown fat genes, and browning of subcutaneous adipose tissue. Comparative studies of the effects of PPARγ downregulation in young and mid-aged mice demonstrate a preferential regulation of brown fat gene programs in inguinal fat in an age-dependent manner. In conclusion, our study uncovers an essential role for PPARγ in maintaining energy expenditure during the aging process and suggests the possibility of targeting PPARγ to counteract age-associated metabolic dysfunction.
PMCID:5847881
PMID: 29383825
ISSN: 1474-9726
CID: 3965152

Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue

Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta
Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids.
PMCID:4812768
PMID: 26957608
ISSN: 1091-6490
CID: 2250442