Try a new search

Format these results:

Searched for:

person:nge01

in-biosketch:yes

Total Results:

17


BASECAMP-1: LEVERAGING HLA LOSS OF HETEROZYGOSITY IN SOLID TUMORS BY NGS TO IDENTIFY PATIENTS WITH RELAPSED SOLID TUMORS FOR FUTURE CEA AND MSLN LOGIC-GATED TMODTM CAR T-CELL THERAPY [Meeting Abstract]

Simeone, D; Morelli, M P; Hecht, J R; Patel, S; Fakih, M; Kirtane, K; Welling, T; Lau, S; Lin, Y; Borad, M; Garon, E; Larson, S; Kato, S; Vu, P; Locke, F; Kim, D W; Sunwoo, J; Miklos, D; Frigault, M; Maus, M; Nikiforow, S; Jacobson, C; Liechty, K; Mardiros, A; Lozac'hmeur, A; Beutner, K; Welch, J; Ng, E; Go, W; Maloney, D; Kopetz, S; Molina, J
Background Solid tumors comprise >90% of cancers. Nonsmall cell lung cancer (NSCLC), metastatic colorectal cancer (CRC), and pancreatic cancer are the leading causes of cancerrelated mortality (5-year overall survival: 26%, 15%, and 11%, respectively).1 Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical efficacy in hematologic malignancies.2,3 However, translating engineered T-cell therapies to solid tumors has proven to be challenging due to a lack of tumor-specific targets that can discriminate cancer cells from normal cells. Previous studies using carcinoembryonic antigen (CEA) T-cell receptors and mesothelin (MSLN) CARs resulted in dose-limiting on-target, off-tumor toxicities.4,5 To create a therapeutic safety window, Tmod CAR T-cell therapy utilizes dual-signaling receptors to create a robust logic gate capable of killing tumor cells, while leaving healthy cells intact.6,7 The 2 receptors in Tmod CAR T-cell therapy comprise an activator that recognizes an antigen on the surface of tumor cells that may also be present on normal cells, such as CEA and MSLN, and a blocker that recognizes a second surface antigen from an allele lost only in tumor cells (figure 1).8,9 Human leukocyte antigen (HLA) loss of heterozygosity (LOH) offers a definitive tumor versus normal discriminator target for CAR T-cell therapy.10 The frequency of HLA LOH among advanced NSCLC, CRC, and pancreatic cancers in the Tempus real-world dataset is 16.3% with a range of 15.6%- 23.1%.11 LOH can be reliably detected using the Tempus xTOnco next-generation sequencing (NGS) assay.12,13 Different activator/blocker combinations can be engineered with the Tmod platform technology and may be applied to T cells and natural killer cells in autologous and allogeneic settings. BASECAMP-1 is a currently enrolling observational study with key objectives: 1) To identify patients with somatic HLA LOH eligible for Tmod CAR T-cell therapy, and 2) Subsequent apheresis and manufacturing feasibility for the future EVEREST CEA or MSLN Tmod CAR T-cell studies. Methods BASECAMP-1 (NCT04981119) patient eligibility has 2 parts (figure 2): 1) Patients will be initially screened to identify germline HLA-A*02 heterozygosity by central NGS. If HLA-A*02 heterozygosity is confirmed, primary archival tumor tissue will be analyzed for somatic mutations by xTOnco NGS testing; 2) If the tumor demonstrates HLAA* 02:01 LOH and the patient is eligible after screening, the patient will undergo apheresis. Banked T cells will be available for the autologous EVEREST Tmod CAR T-cell therapy interventional study to reduce waiting time at relapse. (Figure Presented)
EMBASE:639737823
ISSN: 2051-1426
CID: 5379492

AN NGS ASSAY TO IDENTIFY HLA LOSS OF HETEROZYGOSITY FOR FUTURE CEA AND MSLN LOGICGATED CAR-T SOLID TUMOR PROTOCOLS DESIGNED FOR REDUCED ON-TARGET, OFF-TUMOR TOXICITY [Meeting Abstract]

Kopetz, S; Morelli, M P; Molina, J; Simeone, D; Randolph, Hecht J; Kirtane, K; Borad, M; Welling, T; Garon, E; Mardiros, A; Wang, X; Ng, E; Danek, T; Gallagher, S; Lozac'hmeur, A; Beutner, K; Welch, J; Maloney, D; Go, W; Patel, S
Background Chimeric antigen receptor (CAR) T-cell therapy has shown clinical efficacy in hematologic cancers, but success is limited in solid tumors due to a lack of tumor-specific targets that distinguish cancer from normal cells and an immunosuppressive tumor microenvironment.1 Integrating synthetic biology and comprehensive molecular profiling of tumors may provide active and tolerable approaches to CAR T-cell therapy in patients with solid tumors. Human leukocyte antigen (HLA) loss of heterozygosity (LOH) in tumors offers a definitive tumor vs normal discriminator target for CAR T-cell therapy.2 The Tmod platform3,4 is a modular logic-gated CAR T system comprising different versions including a carcinoembryonic antigen (CEA)- or mesothelin (MSLN)-targeting CAR activator and a separate blocker receptor targeting HLA-A*02 or other HLA alleles to protect normal cells. Compared with existing immunohistochemistry (IHC) tests, Tempus xT-Onco is a standard-of-care next-generation sequencing (NGS) assay5 that detects somatic alterations including HLA LOH and generates whole transcriptome RNA data (eg, CEA or MSLN expression) and a tumor immune infiltration profile, which can effectively identify patients appropriate for Tmod CAR T-cell therapy. Methods HLA LOH in solid tumors was assessed with paired germline and somatic DNA sequencing. Common driver mutations, microsatellite instability status, and tumor mutational burden were examined in HLA-A LOH or HLA-A intact cohorts. Tumor expression of CEA and MSLN was evaluated via RNA sequencing and compared with immunohistochemistry (IHC) results. Results A total of 21,053 tumor samples in the Tempus database were compared with their matched-normal samples. HLA-A LOH was detected in 16% of 10,867 advanced solid tumors (table 1) and similar LOH frequencies were observed among common HLA-A alleles. Clinical factors and molecular biomarkers were similar between HLA-A LOH and HLA-A intact cohorts. High CEA expression was seen in IHC-positive patients. Conclusions The frequency of HLA-A LOH in solid tumors in the Tempus database is similar to that reported in the Cancer Genome Atlas.6 Tempus xT-Onco reliably detects HLA LOH and quantifies CEA and MSLN expression. Based on these data, patients with solid tumors are now being prospectively screened for HLA LOH using xT-Onco in an ongoing tissue banking study (BASECAMP-1, NCT04981119), preparing for future interventional protocols
EMBASE:639737025
ISSN: 2051-1426
CID: 5379542

A2B530, AN AUTOLOGOUS CEA-DIRECTED TMOD TCELL THERAPY WITH AN INHIBITORY RECEPTOR GATED BY HLA-A*02 TO TARGET COLORECTAL, PANCREATIC, AND LUNG CANCER [Meeting Abstract]

Hecht, J R; Sandberg, M; Wang, X; Martin, A; Nampe, D; Gabrelow, G; Li, C; Mcelvain, M; Lee, W -H; Shafaattalab, S; Martire, S; Fisher, F; Ando, Y; Liu, E; Ju, D; Hsin, J -P; Zampieri, A; Simeone, D; Kopetz, S; Morelli, M P; Borad, M; Welling, T; Patel, S; Garon, E; Kirtane, K; Locke, F; Welch, J; Ng, E; Go, W; Mardiros, A; Maloney, D; Wong, L -M; Kamb, A; Xu, H; Molina, J
Background Nearly all colorectal and most pancreatic and lung cancers express carcinoembryonic antigen (CEA). However, due to its expression in normal gut epithelial cells, CEAtargeted therapies have resulted in on-target, off-tumor toxicity. To overcome this, we have developed TmodTM, a logicgated T-cell therapy platform. Tmod constructs are composed of an activating CAR or T-cell receptor that targets a tumor antigen and an inhibitory receptor recognizing an antigen expressed on normal healthy tissues, but not on tumor cells due to loss of heterozygosity (LOH).1,2 A2B530 is a CEAdirected Tmod construct utilizing an LIR-1-based inhibitory receptor (blocker) targeting human leukocyte antigen A*02 (HLA-A*02). Methods To generate CEA Tmod, T cells from HLA-A*02(+) donors were transduced with a single lentivirus to express i) the CAR, ii) the blocker, and iii) an shRNA targeting b2M. Cytotoxicity was measured by culturing CEA(+) target cell line pairs (A*02[-] and A*02[+]), expressing either GFP or RFP, with engineered T cells and quantifying live target cells over time. In vivo activity was examined using NSG mice subcutaneously implanted with normal (CEA[+]A*02[+]) and tumor cells (CEA[+]A*02[-]), in the right and left flanks. Mice were treated intravenously with CEA Tmod cells or control T cells. Results Control CEA CAR T cells killed CEA(+) target cell lines in vitro irrespective of HLA-A*02 expression. In contrast, CEA Tmod cells selectively killed tumor cells (CEA[+]A*02[-]) while sparing normal cells (CEA[+]A*02[+]). In mixed target cell cultures, CEA Tmod cells killed only the A*02(-) target cells, whereas the CEA CAR T cells killed both the A*02(- ) and A*02(+) cell lines. Further, CEA Tmod cells exhibited bidirectional control between the activated and blocked states. While mice treated with control CEA CAR T cells experienced a reduction in volume and bioluminescence of both normal and tumor grafts, CEA Tmod cells specifically cleared A*02(-) tumors in mice (table 1). Finally, although expansion of Tmod cells in peripheral blood trended lower than CAR and TCR controls, anti-tumor activity was comparable in these groups. Conclusions A2B530 is an autologous CEA Tmod cell product that exploits common LOH at the HLA locus in cancer cells, enabling these engineered T cells to discriminate between normal and tumor cells. BASECAMP-1 (NCT04981119), an observational study identifying patients with somatic HLA LOH, is recruiting. Eligible patients with metastatic colorectal, pancreatic, or non-small cell lung cancer will be apheresed for a future A2B530 EVEREST-1 interventional study
EMBASE:639737012
ISSN: 2051-1426
CID: 5379552

A2B694, AN AUTOLOGOUS LOGIC-GATED CELL THERAPY TARGETING MESOTHELIN [Meeting Abstract]

Molina, J; Tokatlian, T; Wang, J; Sharma, S; Manry, D; Naradikian, M; Asuelime, G; DiAndreth, B; Winters, A; San, Miguel T; Mardiros, A; Patel, S; Garon, E; Simeone, D; Kopetz, S; Pia, Morelli M; Welling, T; Borad, M; Kirtane, K; Ng, E; Welch, J; Maloney, D; Go, W; Kamb, A; Hamburger, A; Randolph, Hecht J
Background Mesothelin (MSLN) is expressed on a variety of solid tumors, including mesothelioma and ovarian, uterine, gastric, pancreatic, and lung cancers.1 However, efforts to target MSLN using cellular therapies have been hampered by severe on-target, off-tumor toxicities associated with damage to normal tissues expressing MSLN.2 To avoid these toxicities, we have developed a logic-gated engineered cell therapy, TmodTM, which is composed of two chimeric antigen receptors (CARs): an activator that targets a tumor-associated antigen and an inhibitory receptor (blocker) gated by an antigen expressed on normal tissue but lost in tumor cells due to loss of heterozygosity (LOH). A2B694 is an MSLN-specific Tmod construct combining a third-generation MSLN CAR with an LIR-1-based inhibitory receptor specific for human leukocyte antigen A*02 (HLA-A*02). Methods Lentivirus encoding i) the CAR, ii) the blocker, and iii) an shRNA targeting b2M was used to transduce T cells from HLA-A*02 donors and generate MSLN Tmod cells. In vitro cytotoxicity measurements were performed using fluorescence-based imaging and luciferase readouts. In vivo assessments were performed in NSG mice subcutaneously implanted with normal cells (MSLN[+]A*02[+]), or tumor cells (MSLN[+]A*02[-]), in the left and right flanks, respectively. Following engraftment, mice were randomized and treated intravenously with MSLN Tmod cells or controls. Grafts were measured via caliper. Results MSLN Tmod cells preferentially killed tumor cells (MSLN[+]A*02[-]) over normal cells (MSLN[+]A*02[+]) in vitro, unlike clinically active comparator M5 CAR T cells, which indiscriminately killed both target cell types (figure 1A). Soluble MSLN, tested across a 0-2 mg/mL range, did not impact MSLN Tmod function. Additionally, in mixed cell cultures where T cells and tumor and normal cells were simultaneously cultured (1:1:1 ratio), MSLN Tmod cells selectively killed tumor targets while sparing normal cells. Further, MSLN Tmod cells cycled between activated and blocked states in vitro when repeatedly challenged with tumor or normal target cells. Finally, while MSLN CAR T cells killed both normal and tumor grafts in vivo, MSLN Tmod cells selectively killed tumor grafts while sparing normal grafts (figure 1B, C). Conclusions A2B694 is an autologous MSLN Tmod cell product that leverages LOH at the HLA locus in cancer cells, providing a mechanism to discriminate between normal and tumor cells. BASECAMP-1 (NCT04981119), an observational study that will identify patients with somatic HLA LOH, is currently recruiting. Eligible patients with metastatic colorectal, pancreatic, or non-small cell lung cancer will be apheresed for a future A2B694 interventional study (EVEREST-2)
EMBASE:639736781
ISSN: 2051-1426
CID: 5379562

Next generation sequencing (NGS) to identify relapsed gastrointestinal (GI) solid tumor patients with human leukocyte antigen (HLA) loss of heterozygosity (LOH) for future logic-gated CAR T therapy to reduce on target off tumor toxicity [Meeting Abstract]

Hecht, J R R; Kopetz, S; Patel, S P; Welling, T; Morelli, M P; Borad, M J; Molina, J R; Kirtane, K; Lin, Y; Fan-Port, M; Mardiros, A; Beutner, K; Lozac'hmeur, A; Lau, D; Liechty, K B; Vong, J; Ng, E; Maloney, D G; Go, W Y; Simeone, D M
Background: Metastatic colorectal (CRC), pancreatic (PANC), and gastroesophageal (GE) cancers are the leading causes of GI cancer- related mortality (5-yr survival rate, 14%, 3% and 5-6%, respectively). T-cell immunotherapy targeting GI-associated tumor antigens has been attempted, but efficacy has been constrained by on-target off-tumor toxicity, limiting the therapeutic window. The Tmod (TM) platform is an AND-NOT logic-gated CAR T modular system, versions of which have a CEA-or MSLN-targeting CAR activator and a separate HLA-A*02-targeting blocker receptor to protect normal cells. Tmod CAR T exploits HLA LOH, common in GI malignancies (10-33% in primary solid tumors [TCGA]) and can kill tumor cells without harming healthy cells in vitro and in vivo. However, the prevalence of HLA LOH across GI tumors is unknown in the real-world setting. We utilized the Tempus xT oncology NGS database of patients with multiple GI tumors. From a standard-of-care NGS assay, GI cancer patients can be readily identified for HLA LOH and future treatment with Tmod CAR T therapy.
Method(s): The occurrence of HLA LOH in GI tumors of 1439 patients was assessed using paired germline and somatic DNA sequencing using a research assay [6]. CRC, PANC and GE patients with >= stage 3 were then extracted, and rates of HLA LOH were identified (ie, whether loss occurred across high-frequency HLA-A alleles). In addition, mutations in KRAS and BRAF, as well as MSI status were stratified to determine any association with HLA-A LOH.
Result(s): HLA-A LOH was detected in 830 (17.3%) of all solid tumor records, and a similar proportion when all GI cancer records were analyzed (17.0%). For GI subtypes, these values ranged from 13.5% to 23.1% (Table). No high-frequency HLA-A allele (A*01, A*02, A*03, A*11) was more likely to be lost. Clinical biomarkers (KRAS, BRAF and MSI status) were not associated with HLA-LOH.
Conclusion(s): The frequency of HLA LOH among advanced solid tumor cancers in this dataset is 17.3%, with a range of 13.5-23% between CRC, PANC and GE. The HLA LOH frequency observed in these GI tumors is consistent with that in primary tumors from TCGA, which also used germline-matched and tumor samples. Clinical biomarkers were not associated with HLA LOH. Tempus NGS was able to identify HLA LOH, which can be used for Tmod CAR T therapy to an enhanced therapeutic window. Identification of these patients in BASECAMP-1 (NCT04981119) will enable novel Tmod CAR T therapy. (Table Presented)
PMCID:
EMBASE:637296964
ISSN: 0732-183x
CID: 5164512

BASECAMP-1: An observational study to identify relapsed solid tumor patients with human leukocyte antigen (HLA) loss of heterozygosity (LOH) and leukapheresis for future CAR T-cell therapy [Meeting Abstract]

Molina, J; Go, W; Kopetz, S; Simeone, D; Patel, S; Lin, Y; Liechty, K; Fan-Port, M; Perera, J; Mardiros, A; Beutner, K; Lozac'hmeur, A; Ng, E; Maloney, D; Hecht, J R
Background Solid tumors comprise >90% of cancers. Metastatic colorectal cancer, non-small cell lung cancer, and pancreatic cancer are among the leading causes of cancer-related mortality (5-year overall survival: 14%, 6%, and 3%, respectively). 1Chimeric antigen receptor (CAR) T-cell therapy demonstrated clinical outcomes in hematologic malignancies.2 3 However, translating engineered T-cell therapies to solid tumors proves difficult due to a lack of tumor-specific targets that discriminate cancer cells from normal cells. In previous studies, the use of a carcinoembryonic antigen T-cell receptors and mesothelin CARs both resulted in dose-limiting on-target, off-tumor toxicities.4 5 TmodTM CAR T-cell therapy addresses these challenges by leveraging dual receptors to create a robust AND NOT signal integrator capable of killing tumor cells, while leaving healthy cells intact (figure 1).6 Tmod platform technology is a versatile system that may be applied to T cells and natural killer cells in autologous and allogeneic settings. HLA LOH offers a definitive tumor versus normal discriminator target for CAR T-cell therapy.6 7 The 2 receptors comprise an activator that recognizes an antigen present on the surface of normal and tumor cells and a blocker that recognizes a second surface antigen from an allele lost only in tumor cells. HLA LOH has been observed in ~13% across all solid tumors and up to 33% of pancreatic cancers.8 New technologies have shown higher HLA LOH rates; however, it is unclear whether patients with HLA LOH in their primary tumor tissues are at higher risk for recurrence. BASECAMP-1 is an observational study with key objectives: 1) To determine and identify patients with somatic HLA LOH eligible for Tmod CAR T-cell therapy, and 2) Subsequent leukapheresis and manufacturing feasibility for future Tmod CAR T-cell trials. Methods BASECAMP-1 (NCT04981119) patient eligibility has 2 parts (figure 2): 1) Patients will be initially screened to identify germline HLA-A*02 heterozygosity by central nextgeneration sequencing (NGS). If HLA-A*02 heterozygosity is confirmed, primary archival tumor tissue will be analyzed by xT-Onco NGS testing9 to determine if somatic tumor HLAA* 02 LOH is present; 2) If the tumor demonstrates HLAA* 02 LOH and the patient screens eligible, the patient will undergo leukapheresis. Patients enrolled in the study who undergo leukapheresis will be evaluated for safety 7 days post-leukapheresis and followed for relapsed status. Banked T cells will be available for subsequent autologous Tmod CAR T-cell therapy at the time of relapse
EMBASE:636986116
ISSN: 2051-1426
CID: 5138532

Innovations in Payer-Community Partnerships: The EmblemHealth Neighborhood Care Program

Kwon, Simona C; Trinh-Shevrin, Chau; Wauchope, Karen; Islam, Nadia S; Fifield, Judith; Kidd Arlotta, Patricia; Han, Hee Won; Ng, Eliza
Comprehensive and innovative strategies are needed to address and manage chronic diseases and conditions and to reduce health disparities. EmblemHealth Neighborhood Care (EHNC) sites provide community-based linkages across payers, health providers, and delivery systems and underserved communities using culturally sensitive methods tailored to meet the needs of the community. This article describes this novel initiative and early indicators of its feasibility. Three EHNC sites were established in New York City: Harlem, Cambria Heights, and Chinatown. Each site provides core health and customer services to members and the community. In addition, sites provide tailored services to meet the unique needs of each community. Preliminary data suggest that program and community members are utilizing the sites and returning for follow-up visits. Sites also demonstrate success in cross referral between EHNC teams. The EHNC program is both feasible from the payer's perspective and acceptable to diverse patient populations and settings.
PMID: 29108475
ISSN: 1541-3519
CID: 2773182

Erythema Nodosum in Association with Idiopathic Granulomatous Mastitis: A Case Series and Review of the Literature

Fruchter, R; Castilla, C; Ng, E; Pomeranz, M K; Femia, A N
Idiopathic granulomatous mastitis (IGM) is a chronic inflammatory disease characterized by tender, erythematous, indurated breast plaques with associated edema, drainage, and scar formation.1 IGM is often mistaken for breast carcinoma or infectious mastitis.1,2 Histopathology readily distinguishes IGM from breast carcinoma, as the primary finding in IGM is granulomas centered around mammary lobules.3 Nevertheless, differentiating IGM from bacterial mastitis and other mimickers, such as atypical mycobacterial infections or sarcoidosis, can be more difficult.4 Herein, we report the largest case series of concurrent IGM and erythema nodosum (EN)
PMID: 28271562
ISSN: 1468-3083
CID: 2477092

CONSTRUCTION AND VALIDATION OF THE CHRONIC ACQUIRED POLYNEUROPATHY PATIENT-REPORTED INDEX, "CAP-PRI": A DISEASE-SPECIFIC, HEALTH-RELATED QUALITY OF LIFE INSTRUMENT [Meeting Abstract]

Gwathmey, K.; Burns, T.; Conaway, M.; Sadjadi, R.; Hehir, M.; Barnett, C.; Bril, V; Ng, E.; David, W.; Gable, K.; Dineen, J.; Guptill, J.; Hobson-Webb, L.; Brannagan, T., III; Byun, E.; Adler, M.
ISI:000383856200063
ISSN: 1085-9489
CID: 3544172

Papular acantholytic dyskeratosis of the vulva associated with familial Hailey-Hailey disease

Yu, W Y; Ng, E; Hale, C; Hu, S; Pomeranz, M K
Papular acantholytic dyskeratosis (PAD) of the vulva is a rare, chronic disorder first described in 1984. It presents in young women as white to skin-coloured smooth papules over the vulva, which are persistent but asymptomatic. Histologically, there is hyperkeratosis and focal parakeratosis with acantholytic and dyskeratotic cells forming corps ronds and grains, placing PAD within Ackerman's spectrum of focal acantholytic dyskeratoses with Hailey-Hailey disease (HHD) and Darier disease. There have been 17 previous reports of PAD of the vulva, to our knowledge. Only one demonstrated a familial pattern, and none of the cases was associated with a family history of HHD. This is the first report of PAD and HHD in a single family, suggesting that PAD and HHD lie on a spectrum of disease and are genetically linked.
PMID: 27028372
ISSN: 1365-2230
CID: 2059202