Try a new search

Format these results:

Searched for:

person:nudlee01

Total Results:

176


Shelterin is a dimeric complex with extensive structural heterogeneity

Zinder, John C; Olinares, Paul Dominic B; Svetlov, Vladimir; Bush, Martin W; Nudler, Evgeny; Chait, Brian T; Walz, Thomas; de Lange, Titia
Human shelterin is a six-subunit complex-composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide-binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
PMID: 35881804
ISSN: 1091-6490
CID: 5276382

Cryo-EM structure of the human CST-Polα/primase complex in a recruitment state

Cai, Sarah W; Zinder, John C; Svetlov, Vladimir; Bush, Martin W; Nudler, Evgeny; Walz, Thomas; de Lange, Titia
The CST-Polα/primase complex is essential for telomere maintenance and functions to counteract resection at double-strand breaks. We report a 4.6-Å resolution cryo-EM structure of human CST-Polα/primase, captured prior to catalysis in a recruitment state stabilized by chemical cross-linking. Our structure reveals an evolutionarily conserved interaction between the C-terminal domain of the catalytic POLA1 subunit and an N-terminal expansion in metazoan CTC1. Cross-linking mass spectrometry and negative-stain EM analysis provide insight into CST binding by the flexible POLA1 N-terminus. Finally, Coats plus syndrome disease mutations previously characterized to disrupt formation of the CST-Polα/primase complex map to protein-protein interfaces observed in the recruitment state. Together, our results shed light on the architecture and stoichiometry of the metazoan fill-in machinery.
PMID: 35578024
ISSN: 1545-9985
CID: 5284212

The very hungry bactericidal antibiotics

Rasouly, Aviram; Nudler, Evgeny
PMCID:9282421
PMID: 35867771
ISSN: 1091-6490
CID: 5276052

Site-specific photolabile roadblocks for the study of transcription elongation in biologically complex systems

Nadon, Jean-François; Epshtein, Vitaly; Cameron, Etienne; Samatov, Mikhail R; Vasenko, Andrey S; Nudler, Evgeny; Lafontaine, Daniel A
Transcriptional pausing is crucial for the timely expression of genetic information. Biochemical methods quantify the half-life of paused RNA polymerase (RNAP) by monitoring restarting complexes across time. However, this approach may produce apparent half-lives that are longer than true pause escape rates in biological contexts where multiple consecutive pause sites are present. We show here that the 6-nitropiperonyloxymethyl (NPOM) photolabile group provides an approach to monitor transcriptional pausing in biological systems containing multiple pause sites. We validate our approach using the well-studied his pause and show that an upstream RNA sequence modulates the pause half-life. NPOM was also used to study a transcriptional region within the Escherichia coli thiC riboswitch containing multiple consecutive pause sites. We find that an RNA hairpin structure located upstream to the region affects the half-life of the 5' most proximal pause site-but not of the 3' pause site-in contrast to results obtained using conventional approaches not preventing asynchronous transcription. Our results show that NPOM is a powerful tool to study transcription elongation dynamics within biologically complex systems.
PMCID:9098449
PMID: 35552496
ISSN: 2399-3642
CID: 5214822

Inheritance of repressed chromatin domains during S phase requires the histone chaperone NPM1

Escobar, Thelma M; Yu, Jia-Ray; Liu, Sanxiong; Lucero, Kimberly; Vasilyev, Nikita; Nudler, Evgeny; Reinberg, Danny
The epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone. Proteomic analyses of late S-phase chromatin revealed NPM1 in association with both H3K27me3, an integral component of facultative heterochromatin, and MCM2, an integral component of the DNA replication machinery; moreover, NPM1 interacts directly with PRC2 and with MCM2. Given that NPM1 is essential, the inheritance of repressed chromatin domains was examined anew using mESCs expressing an auxin-degradable version of endogenous NPM1. Upon NPM1 degradation, cells accumulated in the G1-S phase of the cell cycle and parental nucleosome inheritance from repressed chromatin domains was markedly compromised. NPM1 chaperone activity may contribute to the integrity of this process as appropriate inheritance required the NPM1 acidic patches.
PMCID:9045712
PMID: 35476441
ISSN: 2375-2548
CID: 5217492

Crucial role and mechanism of transcription-coupled DNA repair in bacteria

Bharati, Binod K; Gowder, Manjunath; Zheng, Fangfang; Alzoubi, Khaled; Svetlov, Vladimir; Kamarthapu, Venu; Weaver, Jacob W; Epshtein, Vitaly; Vasilyev, Nikita; Shen, Liqiang; Zhang, Yu; Nudler, Evgeny
Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.
PMID: 35355008
ISSN: 1476-4687
CID: 5201232

Pervasive Transcription-coupled DNA repair in E. coli

Martinez, Britney; Bharati, Binod K; Epshtein, Vitaly; Nudler, Evgeny
Global Genomic Repair (GGR) and Transcription-Coupled Repair (TCR) have been viewed, respectively, as major and minor sub-pathways of the nucleotide excision repair (NER) process that removes bulky lesions from the genome. Here we applied a next generation sequencing assay, CPD-seq, in E. coli to measure the levels of cyclobutane pyrimidine dimer (CPD) lesions before, during, and after UV-induced genotoxic stress, and, therefore, to determine the rate of genomic recovery by NER at a single nucleotide resolution. We find that active transcription is necessary for the repair of not only the template strand (TS), but also the non-template strand (NTS), and that the bulk of TCR is independent of Mfd - a DNA translocase that is thought to be necessary and sufficient for TCR in bacteria. We further show that repair of both TS and NTS is enhanced by increased readthrough past Rho-dependent terminators. We demonstrate that UV-induced genotoxic stress promotes global antitermination so that TCR is more accessible to the antisense, intergenic, and other low transcribed regions. Overall, our data suggest that GGR and TCR are essentially the same process required for complete repair of the bacterial genome.
PMCID:8967931
PMID: 35354807
ISSN: 2041-1723
CID: 5201212

TRAF6 functions as a tumor suppressor in myeloid malignancies by directly targeting MYC oncogenic activity

Muto, Tomoya; Guillamot, Maria; Yeung, Jennifer; Fang, Jing; Bennett, Joshua; Nadorp, Bettina; Lasry, Audrey; Redondo, Luna Zea; Choi, Kwangmin; Gong, Yixiao; Walker, Callum S; Hueneman, Kathleen; Bolanos, Lyndsey C; Barreyro, Laura; Lee, Lynn H; Greis, Kenneth D; Vasyliev, Nikita; Khodadadi-Jamayran, Alireza; Nudler, Evgeny; Lujambio, Amaia; Lowe, Scott W; Aifantis, Iannis; Starczynowski, Daniel T
Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of pre-leukemic cells that acquire specific mutations. Although individuals with CH are healthy, they are at an increased risk of developing myeloid malignancies, suggesting that additional alterations are needed for the transition from a pre-leukemia stage to frank leukemia. To identify signaling states that cooperate with pre-leukemic cells, we used an in vivo RNAi screening approach. One of the most prominent genes identified was the ubiquitin ligase TRAF6. Loss of TRAF6 in pre-leukemic cells results in overt myeloid leukemia and is associated with MYC-dependent stem cell signatures. TRAF6 is repressed in a subset of patients with myeloid malignancies, suggesting that subversion of TRAF6 signaling can lead to acute leukemia. Mechanistically, TRAF6 ubiquitinates MYC, an event that does not affect its protein stability but rather represses its functional activity by antagonizing an acetylation modification.
PMID: 35045331
ISSN: 1875-9777
CID: 5131582

Dynamics of Mismatch and Alternative Excision-Dependent Repair in Replicating Bacillus subtilis DNA Examined Under Conditions of Neutral Selection

Patlán-Vázquez, Adriana G; Ayala-García, Víctor M; Vallin, Carmen; Cortés, Jonathan; Vásquez-Morales, Suria G; Robleto, Eduardo A; Nudler, Evgeny; Pedraza-Reyes, Mario
Spontaneous DNA deamination is a potential source of transition mutations. In Bacillus subtilis, EndoV, a component of the alternative excision repair pathway (AER), counteracts the mutagenicity of base deamination-induced mispairs. Here, we report that the mismatch repair (MMR) system, MutSL, prevents the harmful effects of HNO2, a deaminating agent of Cytosine (C), Adenine (A), and Guanine (G). Using Maximum Depth Sequencing (MDS), which measures mutagenesis under conditions of neutral selection, in B. subtilis strains proficient or deficient in MutSL and/or EndoV, revealed asymmetric and heterogeneous patterns of mutations in both DNA template strands. While the lagging template strand showed a higher frequency of C → T substitutions; G → A mutations, occurred more frequently in the leading template strand in different genetic backgrounds. In summary, our results unveiled a role for MutSL in preventing the deleterious effects of base deamination and uncovered differential patterns of base deamination processing by the AER and MMR systems that are influenced by the sequence context and the replicating DNA strand.
PMCID:9280176
PMID: 35847079
ISSN: 1664-302x
CID: 5278812

Publisher Correction: Dietary thiols accelerate aging of C. elegans

Gusarov, Ivan; Shamovsky, Ilya; Pani, Bibhusita; Gautier, Laurent; Eremina, Svetlana; Katkova-Zhukotskaya, Olga; Mironov, Alexander; Makarov, Alexander А; Nudler, Evgeny
PMID: 34873162
ISSN: 2041-1723
CID: 5110162