Try a new search

Format these results:

Searched for:

person:nusser01

in-biosketch:yes

Total Results:

258


Levels of circumsporozoite protein in the Plasmodium oocyst determine sporozoite morphology

Thathy, Vandana; Fujioka, Hisashi; Gantt, Soren; Nussenzweig, Ruth; Nussenzweig, Victor; Menard, Robert
The sporozoite stage of the Plasmodium parasite is formed by budding from a multinucleate oocyst in the mosquito midgut. During their life, sporozoites must infect the salivary glands of the mosquito vector and the liver of the mammalian host; both events depend on the major sporozoite surface protein, the circumsporozoite protein (CS). We previously reported that Plasmodium berghei oocysts in which the CS gene is inactivated do not form sporozoites. Here, we analyzed the ultrastructure of P.berghei oocyst differentiation in the wild type, recombinants that do not produce or produce reduced amounts of CS, and corresponding complemented clones. The results indicate that CS is essential for establishing polarity in the oocyst. The amounts of CS protein correlate with the extent of development of the inner membranes and associated microtubules underneath the oocyst outer membrane, which normally demarcate focal budding sites. This is a first example of a protein controlling both morphogenesis and infectivity of a parasite stage
PMCID:125957
PMID: 11927543
ISSN: 0261-4189
CID: 39688

Delayed-type hypersensitivity in volunteers immunized with a synthetic multi-antigen peptide vaccine (PfCS-MAP1NYU) against Plasmodium falciparum sporozoites

Kublin, James G; Lowitt, Mark H; Hamilton, Robert G; Oliveira, Giane A; Nardin, Elizabeth H; Nussenzweig, Ruth S; Schmeckpeper, Barbara J; Diggs, Carter L; Bodison, Sacared A; Edelman, Robert
During the testing of the safety and immunogenicity of an adjuvanted, synthetic Plasmodium falciparum CS multiple antigen peptide (MAP) vaccine, we investigated the potential for using cutaneous delayed-type hypersensitivity (DTH) reactions as a correlate of immune response. We evaluated 27 of our volunteers for DTH reactions to intradermal inoculation (0.02ml) of several concentrations of the MAP vaccine and adjuvant control solutions. Induration was measured 2 days after skin tests were applied. Nine of 14 vaccinees (64%) with serum, high-titered anti-MAP antibody developed positive DTH (>/=5mm induration), that first appeared by 29 days after immunization and persisted for at least 3-6 months after 1-2 more immunizations. In contrast, DTH responses were negative in eight of eight vaccinees with no or low antibody titers, and in five of five non-immunized volunteers. Biopsies of positive DTH skin test sites were histologically compatible with a DTH reaction. We conclude that the presence of T cell functional activity reflected by a positive DTH skin test response to the MAP antigen serves as another marker for vaccine immunogenicity
PMID: 11906775
ISSN: 0264-410x
CID: 29330

Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus

Bonaldo, Myrna C; Garratt, Richard C; Caufour, Philippe S; Freire, Marcos S; Rodrigues, Mauricio M; Nussenzweig, Ruth S; Galler, Ricardo
The yellow fever 17D virus (YF17D) has several characteristics that are desirable for the development of new, live attenuated vaccines. We approached its development as a vector for heterologous antigens by studying the expression of a humoral epitope at the surface of the E protein based on the results of modelling its three-dimensional structure. This model indicated that the most promising insertion site is between beta-strands f and g, a site that is exposed at the external surface of the virus. The large deletion of six residues from the fg loop of the E protein from yellow fever virus, compared to tick-born encephalitis virus, leaves space at the dimer interface for a large insertion without creating steric hindrance. We have tested this hypothesis by inserting a model humoral epitope from the circumsporozoite protein of Plasmodium falciparum consisting of triple NANP repeats. Recombinant virus (17D/8) expressing this insertion flanked by two glycine residues at each end, is specifically neutralized by a monoclonal antibody to the model epitope. Furthermore, mouse antibodies raised to the recombinant virus recognize the parasite protein in an ELISA assay. Serial passage analysis confirmed the genetic stability of the insertion made in the viral genome and the resulting 17D/8 virus is significantly more attenuated in mouse neurovirulence tests than the 17DD vaccine. The fg loop belongs to the dimerization domain of the E protein and lies at the interface between monomers. This domain undergoes a low pH transition, which is related to the fusion of the viral envelope to the endosome membrane. It is conceivable that a slower rate of fusion, resulting from the insertion close to the dimer interface, may delay the onset of virus production and thereby lead to a milder infection of the host. This would account for the more attenuated phenotype of the recombinant virus in the mouse model and lower extent of replication in cultured cells. The vectorial capacity of the yellow fever virus is being further explored for the expression and presentation of other epitopes, including those mediating T-cell responses
PMID: 11812154
ISSN: 0022-2836
CID: 29331

Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen

Bruna-Romero O; Gonzalez-Aseguinolaza G; Hafalla JC; Tsuji M; Nussenzweig RS
We report that complete protection against malaria and total inhibition of liver stage development and parasitemia was obtained in 100% of BALB/c mice primed with a replication-defective recombinant adenovirus expressing the circumsporozoite (CS) protein of Plasmodium yoelii (AdPyCS), followed by a booster with an attenuated recombinant vaccinia virus, expressing the same malaria antigen, VacPyCS. We found increased levels of activated CS-specific CD8(+) and CD4(+) T cells, higher anti-sporozoite antibody titers, and greater protection in these mice, when the time between priming and boosting with these two viral vectors was extended from 2 to 8 or more weeks. Most importantly, by using this immunization regimen, the protection of the immunized mice was found to be long-lasting, namely complete resistance to infection of all animals 3 1/2 months after priming. These results indicate that immunization with AdPyCS generates highly effective memory T and B cells that can be recalled long after priming by boosting with VacPyCS
PMCID:58757
PMID: 11553779
ISSN: 0027-8424
CID: 23956

Gene targeting in the rodent malaria parasite Plasmodium yoelii

Mota MM; Thathy V; Nussenzweig RS; Nussenzweig V
It is anticipated that the sequencing of Plasmodium falciparum genome will soon be completed. Rodent models of malaria infection and stable transformation systems provide powerful means of using this information to study gene function in vivo. To date, gene targeting has only been developed for one rodent malaria species, Plasmodium berghei. Another rodent species, Plasmodium yoelii, however, is favored to study the mechanisms of protective immunity to the pre-erythrocytic stages of infection and vaccine development. In addition, it offers the opportunity to investigate unique aspects of pathogenesis of blood stage infection. Here, we report on the stable transfection and gene targeting of P. yoelii. Purified late blood stage schizonts were used as targets for electroporation with a plasmid that contains a pyrimethamine-resistant form of the P. berghei dihydrofolate reductase-thymidylate synthase (Pbdhfr-ts) fused to green fluorescent protein (gfp) gene. After drug selection, fluorescent parasites contained intact, non-rearranged plasmids that remain stable under drug-pressure. In addition, we used another dhfr-ts/gfp based plasmid to disrupt the P. yoelii trap (thrombospondin-related anonymous protein) locus by site-specific integration. The phenotype of P. yoelii TRAP knockout was identical to that previously reported for the P. berghei TRAP knockout. In the absence of TRAP, the erythrocytic cycle, gametocyte and oocyst development of the mutant parasites were indistinguishable from wild type (WT). Although the sporozoites appeared morphologically normal, they failed to glide and to invade the salivary glands of mosquitoes
PMID: 11295181
ISSN: 0166-6851
CID: 26746

A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8(+) T cells

Zavala F; Rodrigues M; Rodriguez D; Rodriguez JR; Nussenzweig RS; Esteban M
PMID: 11162829
ISSN: 0042-6822
CID: 23507

Migration of Plasmodium sporozoites through cells before infection

Mota MM; Pradel G; Vanderberg JP; Hafalla JC; Frevert U; Nussenzweig RS; Nussenzweig V; Rodriguez A
Intracellular bacteria and parasites typically invade host cells through the formation of an internalization vacuole around the invading pathogen. Plasmodium sporozoites, the infective stage of the malaria parasite transmitted by mosquitoes, have an alternative mechanism to enter cells. We observed breaching of the plasma membrane of the host cell followed by rapid repair. This mode of entry did not result in the formation of a vacuole around the sporozoite, and was followed by exit of the parasite from the host cell. Sporozoites traversed the cytosol of several cells before invading a hepatocyte by formation of a parasitophorous vacuole, in which they developed into the next infective stage. Sporozoite migration through several cells in the mammalian host appears to be essential for the completion of the life cycle
PMID: 11141568
ISSN: 0036-8075
CID: 16067

A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types

Nardin EH; Calvo-Calle JM; Oliveira GA; Nussenzweig RS; Schneider M; Tiercy JM; Loutan L; Hochstrasser D; Rose K
This open-labeled phase I study provides the first demonstration of the immunogenicity of a precisely defined synthetic polyoxime malaria vaccine in volunteers of diverse HLA types. The polyoxime, designated (T1BT(*))(4)-P3C, was constructed by chemoselective ligation, via oxime bonds, of a tetrabranched core with a peptide module containing B cell epitopes and a universal T cell epitope of the Plasmodium falciparum circumsporozoite protein. The triepitope polyoxime malaria vaccine was immunogenic in the absence of any exogenous adjuvant, using instead a core modified with the lipopeptide P3C as an endogenous adjuvant. This totally synthetic vaccine formulation can be characterized by mass spectroscopy, thus enabling the reproducible production of precisely defined vaccines for human use. The majority of the polyoxime-immunized volunteers (7/10) developed high levels of anti-repeat Abs that reacted with the native circumsporozoite on P. falciparum sporozoites. In addition, these seven volunteers all developed T cells specific for the universal epitope, termed T(*), which was originally defined using CD4(+) T cells from protected volunteers immunized with irradiated P. falciparum sporozoites. The excellent correlation of T(*)-specific cellular responses with high anti-repeat Ab titers suggests that the T(*) epitope functioned as a universal Th cell epitope, as predicted by previous peptide/HLA binding assays and by immunogenicity studies in mice of diverse H-2 haplotypes. The current phase I trial suggests that polyoximes may prove useful for the development of highly immunogenic, multicomponent synthetic vaccines for malaria, as well as for other pathogens
PMID: 11123327
ISSN: 0022-1767
CID: 26830

Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes

Nardin EH; Oliveira GA; Calvo-Calle JM; Castro ZR; Nussenzweig RS; Schmeckpeper B; Hall BF; Diggs C; Bodison S; Edelman R
A multiple antigen peptide (MAP) malaria vaccine containing minimal Plasmodium falciparum circumsporozoite protein repeat epitopes was assessed for safety and immunogenicity in volunteers of known class II genotypes. The MAP/alum/QS-21 vaccine formulation elicited high levels of parasite-specific antibodies in 10 of 12 volunteers expressing DQB1*0603, DRB1*0401, or DRB1*1101 class II molecules. In contrast, volunteers of other HLA genotypes were low responders or nonresponders. A second study of 7 volunteers confirmed the correlation of class II genotype and high responder phenotype. This is the first demonstration in humans that a peptide vaccine containing minimal T and B cell epitopes composed of only 5 amino acids (N, A, V, D, and P) can elicit antibody titers comparable to multiple exposures to irradiated P. falciparum-infected mosquitoes. Moreover, the high-responder phenotypes were predicted by analysis of peptide/HLA interactions in vitro, thus facilitating the rational design of epitope-based peptide vaccines for malaria, as well as for other pathogens
PMID: 11023472
ISSN: 0022-1899
CID: 29332

A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types

Nardin, E H; Calvo-Calle, J M; Oliveira, G A; Nussenzweig, R; Schneider, M; Loutan, L; Tiercy, J-M; Hochstrasser, D; Rose, K
BIOSIS:200100017971
ISSN: 0002-9637
CID: 15773