Try a new search

Format these results:

Searched for:

person:palait01

in-biosketch:yes

Total Results:

51


Inflaming the diseased brain: a role for tainted melanins

Jeitner, T M; Kalogiannis, M; Patrick, P A; Gomolin, I; Palaia, T; Ragolia, L; Brand, D; Delikatny, E J
Inflammation plays a crucial role in neurodegenerative diseases, but the irritants responsible for this response remain largely unknown. This report addressed the hypothesis that hypochlorous acid reacts with dopamine to produce melanic precipitates that promote cerebral inflammation. Spectrophotometric studies demonstrated that nM amounts of HOCl and dopamine react within seconds. A second-order rate constant for the reaction of HOCl and dopamine of 2.5 × 10(4)M(-1)s(-1) was obtained by measuring loss of dopaminergic fluorescence due to HOCl. Gravimetric measurements, electron microscopy, elemental analysis, and a novel use of flow cytometry confirmed that the major product of this reaction is a precipitate with an average diameter of 1.5 μm. Flow cytometry was also used to demonstrate the preferential reaction of HOCl with dopamine rather than albumin. Engulfment of the chlorodopamine particulates by phagocytes in vitro caused these cells to release TNFα and die. Intrastriatal administration of 10(6) particles also increased the content of TNFα in the brain and led to a 50% loss of the dopaminergic neurons in the nigra. These studies indicate that HOCl and dopamine react quickly and preferentially with each other to produce particles that promote inflammation and neuronal death in the brain.
PMID: 25585261
ISSN: 0006-3002
CID: 3466322

Elevation of Bile Acids After Bariatric Surgery May Attenuate Early Atherosclerosis [Meeting Abstract]

Lau, Raymond G.; Ragolia, Louis; Seeley, Randy; Kumar, Sunil; Brathwaite, Collin E.; Rideout, Drew; Hall, Keneth; Hall, Christopher; Palaia, Thomas
ISI:000360120800416
ISSN: 0016-5085
CID: 3508582

Role of Lipocalin-type prostaglandin D2 synthase (L-PGDS) and its metabolite, prostaglandin D2, in preterm birth

Kumar, Sunil; Palaia, Thomas; Hall, Christopher E; Ragolia, Louis
The objective of the study was to investigate the role of prostaglandin D2 during pregnancy and its mediator Lipocalin-type prostaglandin D2 synthase (L-PGDS) as a predictor of preterm birth (PTB). Transgenic L-PGDS (+/+), L-PGDS (-/-) and C57BL/6 control pregnant mice models were used to determine the effect of DP1 and DP2 receptor antagonists in lipopolysaccharide (LPS)-induced PTB mice. In addition, L-PGDS levels were measured in the cervicovaginal secretions (CVS) of 370 pregnant women using ELISA and further processed for isoform detection using 2-D gel electrophoresis. Our results found that C57BL/6 control mice (n = 26), transgenic L-PGDS (+/+) (n = 26), demonstrated an 89% and 100% preterm birth in LPS (intraperitoneal injection, 20mg/kg) induced mice model respectively. Interestingly, the incidence of PTB was significantly reduced to 40% in L-PGDS (-/-) knockout mice (n = 26). DP1 and DP2 receptor antagonists (0.264 μg/day, dose of 0.1 μg/μl with the flow of 0.11 μl/h for 28 day using Alzet pumps) were used to investigate the effect in LPS-induced PTB in C57BL/6 mice and found 3.3-fold increase in viable pups after LPS-induction. In addition, L-PGDS levels were measured in CVS samples and found that PTB women (n = 296) had two-fold higher levels compared to full term births (n = 74) and established a significant inverse correlation between levels of L-PGDS and days to expected delivery by using 370 preterm birth CVS samples. Elevated L-PGDS levels in the CVS of women may be considered as a potential biomarker for PTB in future. Secondly, the use of DP1 and DP2 receptor antagonists may represent novel tocolytic agents for the treatment of PTB.
PMID: 25964109
ISSN: 1098-8823
CID: 4954822

Cholesterol homeostasis in mouse bone marrow-derived macrophages from RA- and SLE-like murine models: a possible mechanism for atherogenesis [Meeting Abstract]

Voloshyna, Iryna; Littlefield, Michael; Teboul, Isaac; Archer, Amy; Palaia, Thomas; Ragolia, Louis; Perlman, Harris; Reiss, Allison
ISI:000346651000005
ISSN: 1530-6860
CID: 2677882

Prostaglandin D2 synthase: Apoptotic factor in alzheimer plasma, inducer of reactive oxygen species, inflammatory cytokines and dialysis dementia

Maesaka, John K; Sodam, Bali; Palaia, Thomas; Ragolia, Louis; Batuman, Vecihi; Miyawaki, Nobuyuki; Shastry, Shubha; Youmans, Steven; El-Sabban, Marwan
BACKGROUND:Apoptosis, reactive oxygen species (ROS) and inflammatory cytokines have all been implicated in the development of Alzheimer's disease (AD). OBJECTIVES/OBJECTIVE:The present study identifies the apoptotic factor that was responsible for the fourfold increase in apoptotic rates that we previously noted when pig proximal tubule, LLC-PK1, cells were exposed to AD plasma as compared to plasma from normal controls and multi-infarct dementia. PATIENTS AND METHODS/METHODS:The apoptotic factor was isolated from AD urine and identified as lipocalin-type prostaglandin D2 synthase (L-PGDS). L-PGDS was found to be the major apoptotic factor in AD plasma as determined by inhibition of apoptosis approximating control levels by the cyclo-oxygenase (COX) 2 inhibitor, NS398, and the antibody to L-PGDS. Blood levels of L-PGDS, however, were not elevated in AD. We now demonstrate a receptor-mediated uptake of L-PGDS in PC12 neuronal cells that was time, dose and temperature-dependent and was saturable by competition with cold L-PGDS and albumin. Further proof of this endocytosis was provided by an electron microscopic study of gold labeled L-PGDS and immunofluorescence with Alexa-labeled L-PGDS. RESULTS:The recombinant L-PGDS and wild type (WT) L-PGDS increased ROS but only the WTL-PGDS increased IL6 and TNFα, suggesting that differences in glycosylation of L-PGDS in AD was responsible for this discrepancy. CONCLUSIONS:These data collectively suggest that L-PGDS might play an important role in the development of dementia in patients on dialysis and of AD.
PMID: 24475446
ISSN: 2251-8363
CID: 3464702

Impaired insulin-stimulated myosin phosphatase Rho-interacting protein signaling in diabetic Goto-Kakizaki vascular smooth muscle cells

Lee, Jin Hee; Palaia, Thomas; Ragolia, Louis
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation and therefore contributes to the enhanced incidence of hypertension observed in diabetes. In this study, we examined the role of insulin on the association of the myosin-binding subunit of myosin phosphatase (MYPT1) to myosin phosphatase Rho-interacting protein (MRIP), a relatively novel member of the myosin phosphatase complex that directly binds RhoA in vascular smooth muscle cells (VSMCs). Through a series of molecular and cellular studies, we investigated whether insulin stimulates the binding of MRIP to MYPT1 and compared the results generated from VSMCs isolated from both Wistar-Kyoto (WKY) control and Goto-Kakizaki (GK) diabetic rats. We demonstrate for the first time that insulin stimulates the binding of MRIP to MYPT1 in a dose- and time-dependent manner, as determined by immunoprecipitation, implying a regulatory role for MRIP in insulin-induced vasodilation signaling via MYPT1 interaction. VSMCs from GK model of Type 2 diabetes had impaired insulin-induced MRIP/MYPT1 binding as well as reduced MRIP expression. Adenovirus-mediated overexpression of MRIP in GK VSMCs led to significantly improved insulin-stimulated MRIP/MYPT1 binding. Finally, insulin-stimulated MRIP translocation out of stress fibers, which was observed in control VSMCs, was impaired in GK VSMCs. We believe the impaired expression of MRIP, and therefore decreased insulin-stimulated MRIP/MYPT1 association, in the GK diabetic model may contribute to the impaired insulin-mediated vasodilation observed in the diabetic vasculature and provides a novel therapeutic strategy for the treatment of Type 2 diabetes.
PMCID:3361950
PMID: 22322972
ISSN: 1522-1563
CID: 4954772

Diminished lipocalin-type prostaglandin D(2) synthase expression in human lung tumors

Ragolia, Louis; Palaia, Thomas; Hall, Christopher E; Klein, Jonathan; Büyük, Arzu
Previously, we demonstrated that lipocalin-type prostaglandin D(2) synthase (L-PGDS) induces apoptosis and prevents cell cycle progression in several cell types. In this study we determined the expression of L-PGDS in a variety of human lung tumor types. While L-PGDS expression was evident in the surrounding margins, we observed significantly decreased protein and gene expression in the tumor tissue. Using RT-PCR we demonstrated that L-PGDS gene expression decreased proportionately with tumor progression. In addition, we demonstrated that exogenously added L-PGDS could suppress the hyperproliferation and PDGF-stimulated migration of A549 cells, a cultured carcinomic human alveolar basal epithelial cell line. We conclude that L-PGDS may play a key role in modulating lung cancer growth and may offer a novel diagnostic and therapeutic approach for treatment.
PMID: 20144489
ISSN: 1872-8332
CID: 4954752

Evaluation of Lipocalin-Type Prostaglandin D-2 Synthase Expression in Human Adipocytes and Its Influence on Obesity. [Meeting Abstract]

Lau, R. G.; Palaia, T.; Shapiro, L. E.; Brathwaite, C.; Ragolia, L.; Alexiadis, V.
ISI:000281989402469
ISSN: 0163-769x
CID: 3519572

Circulating endothelial microparticles in diabetes mellitus

Tramontano, A F; Lyubarova, R; Tsiakos, J; Palaia, T; Deleon, J R; Ragolia, L
BACKGROUND:Endothelial Microparticles (EMPs) are small vesicles shed from activated or apoptotic endothelial cells and involved in cellular cross-talk. Whether EMP immunophenotypes vary according to stimulus in Diabetes Mellitus (DM) is not known. We studied the cellular adhesion molecule (CAM) profile of circulating EMPs in patients with and without Diabetes Mellitus type 2, who were undergoing elective cardiac catheterization. METHODS AND RESULTS/RESULTS:EMPs were analyzed by flow cytometry. The absolute median number of EMPs (EMPs/microL) specific for CD31, CD105, and CD106 was significantly increased in the DM population. The ratio of CD62E/CD31 EMP populations reflected an apoptotic process. CONCLUSION/CONCLUSIONS:Circulating CD31+, CD105+, and CD106+ EMPs were significantly elevated in patients with DM. EMPs were the only independent predictors of DM in our study cohort. In addition, the EMP immunophenotype reflected an apoptotic process. Circulating EMPs may provide new options for risk assessment.
PMCID:2904448
PMID: 20634911
ISSN: 1466-1861
CID: 4954992

Impaired insulin-mediated vasorelaxation in diabetic Goto-Kakizaki rats is caused by impaired Akt phosphorylation

Lee, Jin Hee; Palaia, Thomas; Ragolia, Louis
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation. Previously, we showed the phosphorylation of myosin-bound phosphatase substrate MYPT1, a marker of the vascular smooth muscle cell (VSMC) contraction, was negatively regulated by Akt (protein kinase B) phosphorylation in response to insulin stimulation. In this study we examined the role of Akt phosphorylation on impaired insulin-induced vasodilation in the Goto-Kakizaki (GK) rat model of Type 2 diabetes. GK VSMCs had impaired basal and insulin-induced Akt phosphorylation as well as increases in basal MYPT1 phosphorylation, inducible nitric oxide synthase (iNOS) expression, and nitrite/nitrate production compared with Wistar-Kyoto controls. Both iNOS expression and the inhibition of angiotensin (ANG) II-induced MYPT1 phosphorylation were resistant to the effects of insulin in diabetic GK VSMC. We also measured the isometric tension of intact and denuded GK aorta using a myograph and observed significantly impaired insulin-induced vasodilation. Adenovirus-mediated overexpression of constitutively active Akt in GK VSMC led to significantly improved insulin sensitivity in terms of counteracting ANG II-induced contractile signaling via MYPT1, myosin light chain dephosphorylation, and reduced iNOS expression, S-nitrosylation and survivin expression. We demonstrated for the first time the presence of Akt-independent iNOS expression in the GK diabetic model and that the defective insulin-induced vasodilation observed in the diabetic vasculature can be restored by the overexpression of active Akt, which advocates a novel therapeutic strategy for treating diabetes.
PMCID:2643848
PMID: 19052261
ISSN: 1522-1563
CID: 4954732