Try a new search

Format these results:

Searched for:

person:prichl01

in-biosketch:yes

Total Results:

126


Identification of acute stroke using quantified brain electrical activity

Michelson, Edward A; Hanley, Daniel; Chabot, Robert; Prichep, Leslie S
OBJECTIVES: Acute stroke is a leading cause of brain injury and death and requires rapid and accurate diagnosis. Noncontrast head computed tomography (CT) is the first line for diagnosis in the emergency department (ED). Complicating rapid triage are presenting conditions that clinically mimic stroke. There is an extensive literature reporting clinical utility of brain electrical activity in early diagnosis and management of acute stroke. However, existing technologies do not lend themselves to easily acquired rapid evaluation. This investigation used an independently derived classifier algorithm for the identification of traumatic structural brain injury based on brain electrical activity recorded from a reduced frontal montage to explore the potential clinical utility of such an approach in acute stroke assessment. METHODS: Adult patients (age 18 to 95 years) presenting with stroke-like and/or altered mental status symptoms were recruited from urban academic EDs as part of a large research study evaluating the clinical utility of quantitative brain electrical activity in acutely brain-injured patients. All patients from the parent study who had confirmed strokes, and a control group of stroke mimics (those with final ED diagnoses of migraine or syncope), were selected for this study. All stroke patients underwent head CT scans. Some patients with negative CTs had further imaging with magnetic resonance imaging (MRI). Ten minutes of electroencephalographic data were acquired on a hand-held device in development, from five frontal electrodes. Data analyses were done offline. A Structural Brain Injury Index (SBII) was derived using an independently developed binary discriminant classification algorithm whose input was specified features of brain electrical activity. The SBII was previously found to have high accuracy in the identification of traumatic brain-injured patients who were found to have brain injury on CT (CT+). This algorithm was applied to patients in this study and used to classify patients as CT+ or not CT+. Performance was assessed using sensitivity, specificity, and negative and positive predictive values (NPV, PPV). RESULTS: Forty-eight stroke patients (31 ischemic and 17 hemorrhagic) and 135 stroke mimic controls were included. Within the ischemic population, approximately half were CT- but later confirmed for stroke with MRI (CT-/MRI+). Sensitivity to stroke was 91.7%, specificity 50.4% (to stroke mimic), NPV 94.4%, and PPV 39.6%. Eighty percent of the CT-/MRI+ ischemic strokes were correctly identified at the time of the CT- scan. CONCLUSIONS: Despite a small population and the use of a classifier without the benefit of training on a stroke population, these data suggest that a rapidly acquired, easy-to-use system to assess brain electrical activity at the time of evaluation of acute stroke could be a valuable adjunct to current clinical practice.
PMID: 25565489
ISSN: 1069-6563
CID: 1429042

Classification algorithms for the identification of structural injury in TBI using brain electrical activity

Prichep, Leslie S; Ghosh Dastidar, Samanwoy; Jacquin, Arnaud; Koppes, William; Miller, Jonathan; Radman, Thomas; ONeil, Brian; Naunheim, Rosanne; Huff, J Stephen
BACKGROUND: There is an urgent need for objective criteria adjunctive to standard clinical assessment of acute Traumatic Brain Injury (TBI). Details of the development of a quantitative index to identify structural brain injury based on brain electrical activity will be described. METHODS: Acute closed head injured and normal patients (n=1470) were recruited from 16 US Emergency Departments and evaluated using brain electrical activity (EEG) recorded from forehead electrodes. Patients had high GCS (median=15), and most presented with low suspicion of brain injury. Patients were divided into a CT positive (CT+) group and a group with CT negative findings or where CT scans were not ordered according to standard assessment (CT-/CT_NR). Three different classifier methodologies, Ensemble Harmony, Least Absolute Shrinkage and Selection Operator (LASSO), and Genetic Algorithm (GA), were utilized. RESULTS: Similar performance accuracy was obtained for all three methodologies with an average sensitivity/specificity of 97.5%/59.5%, area under the curves (AUC) of 0.90 and average Negative Predictive Validity (NPV)>99%. Sensitivity was highest for CT+ cases with potentially life threatening hematomas, where two of three classifiers were 100%. CONCLUSION: Similar performance of these classifiers suggests that the optimal separation of the populations was obtained given the overlap of the underlying distributions of features of brain activity. High sensitivity to CT+ injuries (highest in hematomas) and specificity significantly higher than that obtained using ED guidelines for imaging, supports the enhanced clinical utility of this technology and suggests the potential role in the objective, rapid and more optimal triage of TBI patients.
PMID: 25137412
ISSN: 0010-4825
CID: 1142372

Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury

Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S
Abstract This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.
PMID: 24040943
ISSN: 0897-7151
CID: 712552

Childhood abuse and EEG source localization in crack cocaine dependence

Alper, Kenneth; Shah, Jaini; Howard, Bryant; Roy John, E; Prichep, Leslie S
Fourteen subjects with histories of sexual and/or physical abuse in childhood and 13 matched control subjects were selected from a consecutive series of clients in residential treatment for crack cocaine dependence. Standardized low-resolution electromagnetic brain tomography (sLORETA) was used to estimate the source generators of the EEG in a cortical mask with voxel z-scores referenced to normative data at frequency intervals of 039Hz, with nonparametric permutation to correct by randomization for the number of comparisons and the intercorrelations and variance of distribution of voxel values. Subjects with histories of abuse in childhood had significantly greater EEG power than controls in the theta frequency range (3.51-7.41Hz), with greatest differences in the 3.90-Hz band distributed mainly in the parahippocampal, fusiform, lingual, posterior cingulate, and insular gyri. The groups did not differ significantly with regard to delta (1.56-3.12Hz), alpha (7.81-12.48Hz), beta (12.87-19.89Hz), and gamma (20.28-35.10Hz) frequency power. In excess, theta EEG power, a bandwidth of transactions among hippocampus and amygdala and paralimbic and visual association cortex, may be a correlate of childhood exposure to abuse.
PMID: 23693089
ISSN: 0165-1781
CID: 366882

Time course of clinical and electrophysiological recovery after sport-related concussion

Prichep, Leslie S; McCrea, Michael; Barr, William; Powell, Matthew; Chabot, Robert J
BACKGROUND AND PURPOSE: Recent neuroimaging studies suggest that abnormalities in brain function after concussion exist beyond the point of observed clinical recovery. This study investigated the relationship between an index of brain dysfunction (traumatic brain injury [TBI] Index), concussion severity, and outcome. METHODS: EEG was collected from forehead locations in 65 male athletes with concussion within 24 hours of concussion, with follow-up at 8 and 45 days postinjury. Neurocognitive and symptom assessments were also performed and used to classify subjects in mild or moderate concussion categories. Time to return to play was recorded. RESULTS: The TBI Index was higher in the moderate than mild concussion group at injury, day 8, and day 45. The moderate group had increased symptoms and decreased cognitive performance only at the time of injury. At the time of injury, only the TBI Index was significantly associated with the length of time to return to play. CONCLUSIONS: Recovery of brain function after sport-related concussion may extend well beyond the time course of clinical recovery and be related to clinical severity. An index of brain dysfunction may be an objective indicator of injury, recovery, and readiness to return to play. The relatively small sample indicates the need for further study on the time course of physiological recovery.
PMID: 22588360
ISSN: 0885-9701
CID: 425242

Classification of traumatic brain injury severity using informed data reduction in a series of binary classifier algorithms

Prichep, Leslie S; Jacquin, Arnaud; Filipenko, Julie; Dastidar, Samanwoy Ghosh; Zabele, Stephen; Vodencarevic, Asmir; Rothman, Neil S
Assessment of medical disorders is often aided by objective diagnostic tests which can lead to early intervention and appropriate treatment. In the case of brain dysfunction caused by head injury, there is an urgent need for quantitative evaluation methods to aid in acute triage of those subjects who have sustained traumatic brain injury (TBI). Current clinical tools to detect mild TBI (mTBI/concussion) are limited to subjective reports of symptoms and short neurocognitive batteries, offering little objective evidence for clinical decisions; or computed tomography (CT) scans, with radiation-risk, that are most often negative in mTBI. This paper describes a novel methodology for the development of algorithms to provide multi-class classification in a substantial population of brain injured subjects, across a broad age range and representative subpopulations. The method is based on age-regressed quantitative features (linear and nonlinear) extracted from brain electrical activity recorded from a limited montage of scalp electrodes. These features are used as input to a unique "informed data reduction" method, maximizing confidence of prospective validation and minimizing over-fitting. A training set for supervised learning was used, including: "normal control," "concussed," and "structural injury/CT positive (CT+)." The classifier function separating CT+ from the other groups demonstrated a sensitivity of 96% and specificity of 78%; the classifier separating "normal controls" from the other groups demonstrated a sensitivity of 81% and specificity of 74%, suggesting high utility of such classifiers in acute clinical settings. The use of a sequence of classifiers where the desired risk can be stratified further supports clinical utility.
PMID: 22855231
ISSN: 1534-4320
CID: 198422

Quantitative brain electrical activity in the initial screening of mild traumatic brain injuries

O'Neil, Brian; Prichep, Leslie S; Naunheim, Roseanne; Chabot, Robert
INTRODUCTION: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possible role in the initial screening of ED mTBI patients as compared to NOC. METHODS: We studied 119 patients who reported to the ED with mTBI and received a CT. Using a hand-held electroencephalogram (EEG) acquisition device, we collected data from frontal leads to determine the likelihood of a positive CT. The brain electrical activity was processed off-line to generate an index (TBI-Index, biomarker). This index was previously derived using an independent population, and the value found to be sensitive for significant brain dysfunction in TBI patients. We compared this performance of the TBI-Index to the NOC for accuracy in prediction of positive CT findings. RESULTS: Both the brain electrical activity TBI-Index and the NOC had sensitivities, at 94.7% and 92.1% respectively. The specificity of the TBI-Index was more than twice that of NOC, 49.4% and 23.5% respectively. The positive predictive value, negative predictive value and the positive likelihood ratio were better with the TBI-Index. When either the TBI-Index or the NOC are positive (combining both indices) the sensitivity to detect a positive CT increases to 97%. CONCLUSION: The hand-held EEG device with a limited frontal montage is applicable to the ED environment and its performance was superior to that obtained using the New Orleans criteria. This study suggests a possible role for an index of brain function based on EEG to aid in the acute assessment of mTBI patients.
PMCID:3556946
PMID: 23359586
ISSN: 1936-900x
CID: 218232

The evolution of quantitative EEG and source localization: Toward optimization of treatment of neuropsychiatric disorders [Meeting Abstract]

Prichep, Leslie S.
ISI:000308784300003
ISSN: 0167-8760
CID: 180192

Use of a Quantitative Brain Electrical Activity to Aid in Screening of Mild Traumatic Brain Injured Patients [Meeting Abstract]

Prichep, Leslie; Naunheim, Roseanne; Huff, JStephen; O'Neil, Brian
ISI:000304104600292
ISSN: 0269-9052
CID: 2802212

Measuring brain electrical activity to track recovery from sport-related concussion

Barr, William B; Prichep, Leslie S; Chabot, Robert; Powell, Matthew R; McCrea, Michael
PRIMARY OBJECTIVE: To follow recovery from concussion in a sample of athletes using an electroencephalographic (EEG) index of quantitative brain activity developed previously on an independent Emergency Department (ED) sample of head-injured subjects with traumatic brain injury. METHODS AND PROCEDURES: EEG recordings from five frontal electrode sites were obtained on 59 injured athletes and 31 controls at the time of injury and at 8 and 45 days afterward. All subjects also completed standardized clinical assessment of post-concussion symptoms, postural stability and cognitive functioning at injury and 8 and 45 days post-injury. RESULTS: Abnormalities in clinical assessment measures were observed in injured subjects only at time of injury. Statistical analysis of brain electrical activity measures with the ED-based algorithm revealed significant differences between injured athletes vs controls at the time of injury and at day 8. Measures from the two groups did not differ on day 45. CONCLUSIONS: This study demonstrated that an algorithm of brain electrical activity developed on an independent sample of ED subjects with head injury is sensitive to the effects of sport-related concussion. Using this algorithm, abnormal features of brain electrical activity were detected in athletes with concussion at the time of injury and persisted beyond the point of recovery on clinical measures
PMID: 22107157
ISSN: 1362-301x
CID: 149954