Try a new search

Format these results:

Searched for:

person:regatr01

Total Results:

200


Emerging Trends in Magnetic Resonance Fingerprinting for Quantitative Biomedical Imaging Applications: A Review

Monga, Anmol; Singh, Dilbag; de Moura, Hector L; Zhang, Xiaoxia; Zibetti, Marcelo V W; Regatte, Ravinder R
Magnetic resonance imaging (MRI) stands as a vital medical imaging technique, renowned for its ability to offer high-resolution images of the human body with remarkable soft-tissue contrast. This enables healthcare professionals to gain valuable insights into various aspects of the human body, including morphology, structural integrity, and physiological processes. Quantitative imaging provides compositional measurements of the human body, but, currently, either it takes a long scan time or is limited to low spatial resolutions. Undersampled k-space data acquisitions have significantly helped to reduce MRI scan time, while compressed sensing (CS) and deep learning (DL) reconstructions have mitigated the associated undersampling artifacts. Alternatively, magnetic resonance fingerprinting (MRF) provides an efficient and versatile framework to acquire and quantify multiple tissue properties simultaneously from a single fast MRI scan. The MRF framework involves four key aspects: (1) pulse sequence design; (2) rapid (undersampled) data acquisition; (3) encoding of tissue properties in MR signal evolutions or fingerprints; and (4) simultaneous recovery of multiple quantitative spatial maps. This paper provides an extensive literature review of the MRF framework, addressing the trends associated with these four key aspects. There are specific challenges in MRF for all ranges of magnetic field strengths and all body parts, which can present opportunities for further investigation. We aim to review the best practices in each key aspect of MRF, as well as for different applications, such as cardiac, brain, and musculoskeletal imaging, among others. A comprehensive review of these applications will enable us to assess future trends and their implications for the translation of MRF into these biomedical imaging applications.
PMCID:10968015
PMID: 38534511
ISSN: 2306-5354
CID: 5644872

Optimizing variable flip angles in magnetization-prepared gradient-echo sequences for efficient 3D-T1ρ mapping

Zibetti, Marcelo V W; De Moura, Hector L; Keerthivasan, Mahesh B; Regatte, Ravinder R
PURPOSE:mapping. METHODS:mapping and evaluate their performance in model agarose phantoms (n = 4) and healthy volunteers (n = 5) for knee joint imaging. We also tested the optimization with sequence parameters targeting faster acquisitions. RESULTS:Our results show that optimized variable flip angle can improve the accuracy and the precision of the sequences, seen as a reduction of the mean of normalized absolute difference from about 5%-6% to 3%-4% in model phantoms and from 15%-16% to 11%-13% in the knee joint, and improving SNR from about 12-28 to 22-32 in agarose phantoms and about 7-14 to 13-17 in healthy volunteers. The optimization can also compensate for the loss in quality caused by making the sequence faster. This results in sequence configurations that acquire more data per unit of time with SNR and mean of normalized absolute difference measurements close to its slower versions. CONCLUSION:mapping of the knee joint.
PMCID:10524308
PMID: 37288538
ISSN: 1522-2594
CID: 5592412

Characterization of Age-Related and Sex-Related Differences of Relaxation Parameters in the Intervertebral Disc Using MR-Fingerprinting

Menon, Rajiv G; Monga, Anmol; Kijowski, Richard; Regatte, Ravinder R
BACKGROUND:Multiparameter characterization using MR fingerprinting (MRF) can quantify multiple relaxation parameters of intervertebral disc (IVD) simultaneously. These parameters may vary by age and sex. PURPOSE/OBJECTIVE:To investigate age- and sex-related differences in the relaxation parameters of the IVD of the lumbar spine using a multiparameter MRF technique. STUDY TYPE/METHODS:Prospective. SUBJECTS/METHODS:17 healthy subjects (8 male; mean age = 34 ± 10 years, range 20-60 years). FIELD STRENGTH/SEQUENCE/UNASSIGNED:maps at 3.0T. ASSESSMENT/RESULTS:maps. STATISTICAL TESTS/METHODS:of IVD. Statistical significance was defined as P-value <0.05. RESULTS:contrast (R = 0.709). CONCLUSION/CONCLUSIONS:of IVD in healthy subjects. LEVEL OF EVIDENCE/METHODS:2 TECHNICAL EFFICACY: Stage 1.
PMID: 37610269
ISSN: 1522-2586
CID: 5598472

Age and gender differences in lumbar intervertebral disk strain using mechanical loading magnetic resonance imaging

Menon, Rajiv G; de Moura, Hector L; Kijowski, Richard; Regatte, Ravinder R
The objective of the current study was to investigate age- and gender-related differences in lumbar intervertebral disk (IVD) strain with the use of static mechanical loading and continuous three-dimensional (3D) golden-angle radial sparse parallel (GRASP) MRI. A continuous 3D-GRASP stack-of-stars trajectory of the lumbar spine was performed on a 3-T scanner with static mechanical loading. Compressed sensing reconstruction, motion deformation maps, and Lagrangian strain maps during loading and recovery in the X-, Y-, and Z-directions were calculated for segmented IVD segments from L1/L2 to L5/S1. Mean IVD height was measured at rest. Spearman coefficients were used to evaluate the associations between age and global IVD height and global IVD strain. Mann-Whitney tests were used to compare global IVD height and global IVD strain in males and females. The prospective study enrolled 20 healthy human volunteers (10 males, 10 females; age 34.6 ± 11.4 [mean ± SD], range 22-56 years). Significant increases in compressive strain were observed with age, as evidenced by negative correlations between age and global IVD strain during loading (ρ = -0.76, p = 0.0046) and recovery (ρ = -0.68, p = 0.0251) in the loading X-direction. There was no significant correlation between age and global IVD height, global IVD strain during loading and recovery in the Y-direction, and global IVD strain during loading and recovery in the Z-direction. There were no significant differences between males and females in global IVD height and global IVD strain during loading and recovery in the X-, Y-, and Z-directions. It was concluded that our study demonstrated the significant role aging plays in internal dynamic strains in the lumbar IVD during loading and recovery. Older healthy individuals have reduced IVD stiffness and greater IVD compression during static mechanical loading of the lumbar spine. The GRASP-MRI technique demonstrates the feasibility to identify changes in IVD mechanical properties with early IVD degeneration due to aging.
PMID: 37409683
ISSN: 1099-1492
CID: 5539302

Updates on Compositional MRI Mapping of the Cartilage: Emerging Techniques and Applications

Zibetti, Marcelo V W; Menon, Rajiv G; de Moura, Hector L; Zhang, Xiaoxia; Kijowski, Richard; Regatte, Ravinder R
Osteoarthritis (OA) is a widely occurring degenerative joint disease that is severely debilitating and causes significant socioeconomic burdens to society. Magnetic resonance imaging (MRI) is the preferred imaging modality for the morphological evaluation of cartilage due to its excellent soft tissue contrast and high spatial resolution. However, its utilization typically involves subjective qualitative assessment of cartilage. Compositional MRI, which refers to the quantitative characterization of cartilage using a variety of MRI methods, can provide important information regarding underlying compositional and ultrastructural changes that occur during early OA. Cartilage compositional MRI could serve as early imaging biomarkers for the objective evaluation of cartilage and help drive diagnostics, disease characterization, and response to novel therapies. This review will summarize current and ongoing state-of-the-art cartilage compositional MRI techniques and highlight emerging methods for cartilage compositional MRI including MR fingerprinting, compressed sensing, multiexponential relaxometry, improved and robust radio-frequency pulse sequences, and deep learning-based acquisition, reconstruction, and segmentation. The review will also briefly discuss the current challenges and future directions for adopting these emerging cartilage compositional MRI techniques for use in clinical practice and translational OA research studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
PMID: 37010113
ISSN: 1522-2586
CID: 5463602

Age-Dependent Changes in Knee Cartilage T1 , T2 , and T1p Simultaneously Measured Using MRI Fingerprinting

Kijowski, Richard; Sharafi, Azadeh; Zibetti, Marcelo V W; Chang, Gregory; Cloos, Martijn A; Regatte, Ravinder R
BACKGROUND:Magnetic resonance fingerprinting (MRF) techniques have been recently described for simultaneous multiparameter cartilage mapping of the knee although investigation of their ability to detect early cartilage degeneration remains limited. PURPOSE/OBJECTIVE:relaxation times measured using a three-dimensional (3D) MRF sequence in healthy volunteers. STUDY TYPE/METHODS:Prospective. SUBJECTS/METHODS:The study group consisted of 24 healthy asymptomatic human volunteers (15 males with mean age 34.9 ± 14.4 years and 9 females with mean age 44.5 ± 13.1 years). FIELD STRENGTH/SEQUENCE/UNASSIGNED:maps of knee cartilage. ASSESSMENT/RESULTS:relaxation times of the knee were measured. STATISTICAL TESTS/METHODS:relaxation times. The value of P < 0.05 was considered statistically significant. RESULTS: = 0.54-0.66). CONCLUSION/CONCLUSIONS:relaxation times simultaneously measured using a 3D-MRF sequence in healthy volunteers showed age-dependent changes in knee cartilage, primarily within the medial compartment.
PMID: 36190187
ISSN: 1522-2586
CID: 5361572

Three-dimensional multi-parameter brain mapping using MR fingerprinting

Menon, Rajiv G; Sharafi, Azadeh; Muccio, Marco; Smith, Tyler; Kister, Ilya; Ge, Yulin; Regatte, Ravinder R
The purpose of this study was to develop and test a 3D multi-parameter MR fingerprinting (MRF) method for brain imaging applications. The subject cohort included 5 healthy volunteers, repeatability tests done on 2 healthy volunteers and tested on two multiple sclerosis (MS) patients. A 3D-MRF imaging technique capable of quantifying T 1 , T 2 and T 1ρ was used. The imaging sequence was tested in standardized phantoms and 3D-MRF brain imaging with multiple shots (1, 2 and 4) in healthy human volunteers and MS patients. Quantitative parametric maps for T 1 , T 2 , T 1ρ , were generated. Mean gray matter (GM) and white matter (WM) ROIs were compared for each mapping technique, Bland-Altman plots and intra-class correlation coefficient (ICC) were used to assess repeatability and Student T-tests were used to compare results in MS patients. Standardized phantom studies demonstrated excellent agreement with reference T 1 /T 2/ T 1ρ mapping techniques. This study demonstrates that the 3D-MRF technique is able to simultaneously quantify T 1 , T 2 and T 1ρ for tissue property characterization in a clinically feasible scan time. This multi-parametric approach offers increased potential to detect and differentiate brain lesions and to better test imaging biomarker hypotheses for several neurological diseases, including MS.
PMCID:10055680
PMID: 36993561
ISSN: n/a
CID: 5534442

K2S Challenge: From Undersampled K-Space to Automatic Segmentation

Tolpadi, Aniket A.; Bharadwaj, Upasana; Gao, Kenneth T.; Bhattacharjee, Rupsa; Gassert, Felix G.; Luitjens, Johanna; Giesler, Paula; Morshuis, Jan Nikolas; Fischer, Paul; Hein, Matthias; Baumgartner, Christian F.; Razumov, Artem; Dylov, Dmitry; Lohuizen, Quintin van; Fransen, Stefan J.; Zhang, Xiaoxia; Tibrewala, Radhika; de Moura, Hector Lise; Liu, Kangning; Zibetti, Marcelo V.W.; Regatte, Ravinder; Majumdar, Sharmila; Pedoia, Valentina
Magnetic Resonance Imaging (MRI) offers strong soft tissue contrast but suffers from long acquisition times and requires tedious annotation from radiologists. Traditionally, these challenges have been addressed separately with reconstruction and image analysis algorithms. To see if performance could be improved by treating both as end-to-end, we hosted the K2S challenge, in which challenge participants segmented knee bones and cartilage from 8× undersampled k-space. We curated the 300-patient K2S dataset of multicoil raw k-space and radiologist quality-checked segmentations. 87 teams registered for the challenge and there were 12 submissions, varying in methodologies from serial reconstruction and segmentation to end-to-end networks to another that eschewed a reconstruction algorithm altogether. Four teams produced strong submissions, with the winner having a weighted Dice Similarity Coefficient of 0.910 ± 0.021 across knee bones and cartilage. Interestingly, there was no correlation between reconstruction and segmentation metrics. Further analysis showed the top four submissions were suitable for downstream biomarker analysis, largely preserving cartilage thicknesses and key bone shape features with respect to ground truth. K2S thus showed the value in considering reconstruction and image analysis as end-to-end tasks, as this leaves room for optimization while more realistically reflecting the long-term use case of tools being developed by the MR community.
SCOPUS:85149253216
ISSN: 2306-5354
CID: 5446282

Repeatability of Quantitative Knee Cartilage T1, T2, and T1ρ Mapping With 3D-MRI Fingerprinting

Zhang, Xiaoxia; de Moura, Hector L.; Monga, Anmol; Zibetti, Marcelo V.W.; Kijowski, Richard; Regatte, Ravinder R.
Background: Three-dimensional MR fingerprinting (3D-MRF) techniques have been recently described for simultaneous multiparametric mapping of knee cartilage. However, investigation of repeatability remains limited. Purpose: To assess the intra-day and inter-day repeatabilities of knee cartilage T1, T2, and T1ρ maps using a 3D-MRF sequence for simultaneous measurement. Study Type: Prospective. Subjects: Fourteen healthy subjects (35.4 ± 9.3 years, eight males), scanned on Day 1 and Day 7. Field Strength/Sequence: 3 T/3D-MRF, T1, T2, and T1ρ maps. Assessment: The acquisition of 3D-MRF cartilage (simultaneous acquisition of T1, T2, and T1ρ maps) were acquired using a dictionary pattern-matching approach. Conventional cartilage T1, T2, and T1ρ maps were acquired using variable flip angles and a modified 3D-Turbo-Flash sequence with different echo and spin-lock times, respectively, and were fitted using mono-exponential models. Each sequence was acquired on Day 1 and Day 7 with two scans on each day. Statistical Tests: The mean and SD for cartilage T1, T2, and T1ρ were calculated in five manually segmented regions of interest (ROIs), including lateral femur, lateral tibia, medial femur, medial tibia, and patella cartilages. Intra-subject and inter-subject repeatabilities were assessed using coefficient of variation (CV) and intra-class correlation coefficient (ICC), respectively, on the same day and among different days. Regression and Bland"“Altman analysis were performed to compare maps between the conventional and 3D-MRF sequences. Results: The CV in all ROIs was lower than 7.4%, 8.4%, and 7.5% and the ICC was higher than 0.56, 0.51, and 0.52 for cartilage T1, T2, and T1ρ, respectively. The MRF results had a good agreement with the conventional methods with a linear regression slope >0.61 and R2 > 0.59. Conclusion: The 3D-MRF sequence had high intra-subject and inter-subject repeatabilities for simultaneously measuring knee cartilage T1, T2, and T1ρ with good agreement with conventional sequences. Evidence Level: 1. Technical Efficacy: Stage 1.
SCOPUS:85175075205
ISSN: 1053-1807
CID: 5616662

Magnetic resonance imaging-based assessment of in vivo cartilage biomechanics

Chapter by: Menon, Rajiv G.; Brown, Ryan; Regatte, Ravinder R.
in: Cartilage Tissue and Knee Joint Biomechanics: Fundamentals, Characterization and Modelling by
[S.l.] : Elsevier, 2023
pp. 163-171
ISBN: 9780323907217
CID: 5615722